Nuclear Astrophysics with Radioactive Beams

C.A. Bertulani

Department of Physics and Astronomy Texas A&M University-Commerce

Escuela Andina "Física Nuclear en el siglo 21" (26-30 November 2012)

Part III

E-mail: carlos.bertulani@tamuc.edu

Web-page: http://faculty.tamu-commerce.edu/cbertulani/

C.A. Bertulani

Escuela Andina "Física Nuclear en el siglo 21" (26-30 November 2012)

Experiments and theories for radioactive beams

RIB Facilities

(Operating or Under Construction)

Coulomb Dissociation Radiative Capture Reactions

Coulomb Excitation

$$E_{r}(r,r') = Z_{p}e \int \frac{\rho(\mathbf{r}')}{|r-r'|} d^{3}r' \\ = \frac{Z_{p}e}{r} + \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{3}} + \frac{1}{2} \frac{Q_{ij}r_{i}r_{j}}{r^{5}} + \cdots$$

 $\mathbf{p} = \int \mathbf{r}' \rho(\mathbf{r}') d^3 r' \quad \text{(dipole)}$ $Q_{ij} = \int \left(3r'_i r'_j - r'^2 \delta_{ij}\right) \rho(\mathbf{r}') d^3 r'$ (Quadrupole)

Semiclassical method: r = r(t)

/alidity:
$$\eta = \frac{\text{distance of closest approach}}{\text{wavelength}} = \frac{Z_1 Z_2 e^2}{\hbar v} >> 1$$

C.A. Bertulani

General multipole expansion

(if
$$\mathbf{r} > \mathbf{r}'$$
)

$$\frac{1}{|\mathbf{r}(t) - \mathbf{r}'|} = \sum_{L,M} \frac{4\pi}{2L+1} \frac{r'}{r^{L+1}(t)} Y_{LM}(\hat{\mathbf{r}}(t)) Y_M^*(\hat{\mathbf{r}}')$$

Calculate a_{fi} and average over spins:

Cross section: $\frac{d\sigma}{d\Omega} = \frac{d\sigma_R}{d\Omega} \cdot w_{fi} = \sum_{L>0} \frac{d\sigma_L}{d\Omega}$

$$w_{fi} = \frac{1}{2J_i + 1} \sum_{M_i M_f} \left| a_{fi} \right|^2$$

reduced transition

$$\frac{d\sigma_L}{d\Omega} \sim Z_P^2 B(EL) \left| I_L(\omega_{fi}) \right|^2$$

r(t)

$$I_{L}(\omega) = \int_{-\infty}^{\infty} dt \frac{1}{r^{L+1}(t)} Y_{LM}(\hat{\mathbf{r}}(t)) e^{i\omega t}$$

$$\omega_{fi} = \frac{E_f - E_i}{\hbar}$$

C.A. Bertulani

 $B(EL) \sim \left| \int r^L \delta \rho_{fi} d^3 r \right|^2 \frac{\text{reduced } r}{\text{strength}}$

Virtual photon numbers

 $\nabla \cdot \mathbf{E}(t) = 0$

 $\nabla \cdot \mathbf{B}(t) = 0$

E, B-field of projectile divergence free

$$\frac{d\sigma_{L}}{d\Omega} = \int \frac{dE_{\gamma}}{E_{\gamma}} \frac{dn_{L}}{d\Omega} (E_{\gamma}, \theta) \sigma_{L}^{\gamma} (E_{\gamma})$$

photonuclear X-section:

$$\sigma_L^{\gamma} \sim E_{\gamma}^{2L+1} B(EL)$$

 $E_{\gamma} = E_f - E_i$

virtual photon numbers:

$$\frac{dn_{L}}{d\Omega} \sim Z_{P}^{2} \left| I_{L} \left(\omega_{fi}, \theta \right) \right|^{2}$$

impact parameter dependence:

$$n_L(E_{\gamma},b) \equiv \frac{dn_L}{2\pi bdb} \sim \sin^4(\theta/2)\frac{dn_L}{d\Omega}$$

C.A. Bertulani

$1/r^2$ force

Comet Shoemaker-Levy 9 disintegrating as it approaches Jupiter in July 1994.

Coulomb dissociation and nuclear astrophysics

Applications to radiative capture (n, γ) and (p, γ) reactions in nuclear astrophysics.

C.A. Bertulani

Including nuclear conribution: DWBA

ш

ш

ш

ш

Ш

ш

ш

ш

$$f_{inel}(\theta) = -\frac{4\pi^2 \mu}{\hbar^2} \int d^3 r \, \chi_{\mathbf{k}'}^{(-)*}(\mathbf{r}) \, V(\mathbf{r}) \, \Psi_{\mathbf{k}}^{(+)}(\mathbf{r})$$

 $\Psi^{\scriptscriptstyle\pm} \sim \chi^{\scriptscriptstyle\pm}$

ш

ш

ш

ш

Ш

Ш

ш

ш

ш

$$f_{DWBA}\left(\mathbf{k}^{\prime},\mathbf{k}\right) = -\frac{4\pi^{2}\mu}{\hbar^{2}} \left\langle \chi_{\mathbf{k}^{\prime}}^{(-)} \left| V \right| \chi_{\mathbf{k}}^{(+)} \right\rangle$$

$$T_{DWBA}\left(\mathbf{k}^{\prime},\mathbf{k}\right) = \left\langle \chi_{\mathbf{k}^{\prime}}^{(-)} \left| V \right| \chi_{\mathbf{k}}^{(+)} \right\rangle$$

Distorted: all orders in U

Born: only first order in V

$$f_{inel}^{C}(\theta) \approx \int d^{3}r \, d^{3}r' \Psi_{\mathbf{k}'}^{(-)*}(\mathbf{r}) \varphi_{f}(\mathbf{r}') V_{C}(\mathbf{r},\mathbf{r}') \Psi_{\mathbf{k}}^{(+)}(\mathbf{r}) \varphi_{i}(\mathbf{r}')$$

nice, well known, angel

$$f_{inel}^{N}(\theta) \approx \int d^{3}r \, d^{3}r' \Psi_{\mathbf{k}'}^{(-)*}(\mathbf{r}) \varphi_{f}(\mathbf{r}') V_{N}(\mathbf{r},\mathbf{r}') \Psi_{\mathbf{k}}^{(+)}(\mathbf{r}) \varphi_{i}(\mathbf{r}')$$

bad, not well known, a true monster

$$\frac{d\sigma}{d\Omega} = \left| f_{inel}^{N}(\theta) + f_{inel}^{C}(\theta) \right|^{2}$$

PRL 102, 092502 (2009)

PHYSICAL REVIEW LETTERS

week ending 6 MARCH 2009

Search for the Pygmy Dipole Resonance in ⁶⁸Ni at 600 MeV/nucleon

O. Wieland, ¹A. Bracco, ^{1,2} F. Camera, ^{1,2} G. Benzoni, ¹N. Blasi, ¹S. Brambilla, ¹F. C. L. Crespi, ^{1,2}S. Leoni, ^{1,2}B. Million, ¹R. Nicolini, ^{1,2}A. Maj, ³P. Bednarczyk, ³J. Grebosz, ³M. Kmiecik, ³W. Meczynski, ³J. Styczen, ³T. Aumann, ⁴A. Banu, ⁴T. Beck, ⁴F. Becker, ⁴L. Caceres, ^{4,*}P. Doornenbal, ^{4,†}H. Emling, ⁴J. Gerl, ⁴H. Geissel, ⁴M. Gorska, ⁴O. Kavatsyuk, ⁴M. Kavatsyuk, ⁴I. Kojouharov, ⁴N. Kurz, ⁴R. Lozeva, ⁴N. Saito, ⁴T. Saito, ⁴H. Schaffner, ⁴H.J. Wollersheim, ³J. Jolie, ⁵P. Reiter, ⁵N. Warr, ⁵G. deAngelis, ⁶A. Gadea, ⁶D. Napoli, ⁶S. Lenzi, ^{7,8}S. Lunardi, ^{7,8}D. Balabanski, ^{9,10}G. LoBianco, ^{9,10}

C. Petrache, 9,‡ A. Saltarelli, 9,10 M. Castoldi, 11 A. Zucchiatti, 11 J. Walker, 12 and A. Bürger 13,8

C.A. Bertulani

Example: Coulomb breakup of ⁸B

Solar neutrino problem is due to v-oscillations

But this reaction needs to be known more accurately

- J. Bahcall

Transfer Reactions

One-nucleon transfer (Born approximation)

$$P_{\beta} = \left| \frac{i}{\hbar} \int_{-\infty}^{\infty} dt \, F_{\beta\alpha} \left(\mathbf{R} \right) e^{i(E_{\beta} - E_{\alpha})t/\hbar + (\dots)} \right|^{2} \sim \tau_{coll} \left| F_{\beta\alpha} \left(D \right) \right|^{2} g\left(Q_{\beta\alpha} \right)$$

$$F_{\beta\alpha}(\mathbf{R}) \sim \int d^3 \mathbf{r}_1 \, e^{i\mathbf{Q}\cdot\mathbf{r}_1} \phi_{a_n}^{(A)} (\mathbf{R} + \mathbf{r}_1) (V_{1A} - \langle U \rangle) \phi_{a_n}^{(b)} (\mathbf{r}_1)$$

Q = momentum transfer V_{1A} transfer interaction. Why not V_{1b} ?? POST-PRIOR representation

Escuela Andina "Física Nuclear en el siglo 21" (26-30 November 2012)

Multi-nucleon transfer (Born approximation)

Transfer Reactions Asymptotic Normalization Coefficients

Spectroscopic factors

- What is the amplitude for ${}^{12}C + n$ in ${}^{13}C$?
- Define overlap function:

$$I(\mathbf{r}) = \langle \varphi_A(\zeta_A) \varphi_n(\zeta_N) | \varphi_B(\zeta_A, \zeta_N; \mathbf{r}) \rangle$$

And the spectroscopic factor is

$$\int \mathrm{d}^3 r \mid I^{\mathrm{c}}_{\ell j}(\mathbf{r}) \mid^2 = \mathrm{S}(\ell j)$$

C.A. Bertulani

Asymptotic Region - I (neutron)

• Single particle overlap function for $r > R_N$

$$I_{(lj)}(r) \xrightarrow{r > R_N} K_{(lj)} \varphi_{(lj)}(r)$$

$$\varphi_{(lj)}(r) \xrightarrow{r > R_N} b_{(lj)} i\kappa h_l^{(1)}(i\kappa r)$$

Model independent definition:

$$I_{(lj)}(r) \xrightarrow{r > R_N} C_{(lj)} ik h_l^{(1)}(ikr)$$

$$k = \sqrt{2m_{An}} e_{An}^B, \quad e_{An}^B = m_A + m_n - m_B$$

Asymptotic Region - II (neutron)

Asymptotic Normalization Coefficient

 $C_{(lj)} = K_{(lj)} b_{(lj)}$

Typical approach, assume for all r

$$I_{lj}(r) = K_{lj}\varphi_{n(lj)}(r)$$

$$\Rightarrow S_{lj} = \int_{0}^{\infty} dr r^{2} I_{lj}^{2}(r) = K_{(lj)}^{2} \int_{0}^{\infty} dr r^{2} \varphi_{lj}^{2}(r) = K_{(lj)}^{2}$$

DWBA Again

Cross section for A(d,p)B

$$\sigma^{DW} = \left| M \right|^2 = \left| \left\langle \psi_f^{(-)} I_{An}^B \left| V \right| \phi_{pn} \psi_i^{(+)} \right\rangle \right|^2$$

With the single particle approximation

$$\sigma^{DW} = S \left| \left\langle \psi_f^{(-)} \phi_{An}(n_r lj) \left| V \right| \phi_{pn} \psi_i^{(+)} \right\rangle \right|^2$$

S is the normalization (i.e. 'spectroscopic') factor

Transfer Reaction (proton)

Transition amplitude:

Peripheral transfer:

$$M = \left\langle \psi_f^{(-)} I_{An}^B \left| V \right| \phi_{pn} \psi_i^{(+)} \right\rangle$$

$$I_{Bp}^{A} \approx C_{Bp}^{A} \frac{W_{-\eta_{A},l+\frac{1}{2}}(2\kappa_{Bp}r_{Bp})}{r_{Bp}}$$

$$[S = C^{2}/b^{2}]$$

$$\frac{d\sigma}{d\Omega} = (C_{Bpl_{A}j_{A}}^{A})^{2}(C_{apl_{d}j_{d}}^{d})^{2} \frac{\sigma_{l_{A}j_{A}}^{DW}}{b_{Bpl_{A}j_{A}}^{2}}$$

Use of ANCs

- Find a peripheral transfer reaction
- Measure angular distribution (abs. c.s.)
- DWBA calculation (optical model parameters)
- Determine single particle ANCs
- Use the information (ANCs) obtained for the wavefunctions to calculate matrix elements of astrophysical interest

Asymptotic normalization coefficients

Transfer Reactions Trojan Horse Method

Trojan horse method

Measuring $A + a \rightarrow b + c + C$ with $a = b + x \Rightarrow$ $A + x \rightarrow C + c$ (astrophysics) G.Baur, PLB 178 (1986) 135

Trojan horse method - examples

Method extended and applied to several reactions of astrophysics interest by Claudio Spitaleri and collaborators

Transfer Reactions Surrogate Reactions

Surrogate reactions

Reaction of interest

Deduce from:-

e.g., (n,f) from transfer reactions Kessedjian, et al., PLB 692 (2010) 297

Fission cross sections not sensitive to differences J^π distributions!!!
→ Hauser-Feshbach = Ewing-Weisskopf
→ Surrogate reactions work

BUT, unfortunately, most often it doesn't work.

C.A. Bertulani

Direct Reactions at High Energies

Quantum scattering: Low energy

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + V\right]\Psi = E\Psi$$

Partial wave expansion:

$$u_{l}(r) \xrightarrow{r \to \infty} \frac{i}{2} \{ H_{l}^{(-)}(kr) - S_{l}H_{l}^{(+)}(kr) \}$$
Cncoming wave
$$\text{``Survival'' amplitude}$$

$$\text{(S-matrix)}$$

$$S_{l} = e^{2i\delta_{l}} \quad (\delta_{l} = \text{Phase shift})$$

k

$$|S_l|^2 =$$
 "Survival" probability ≤ 1

.

12

31

k'

V

High energy collisions (E_{lab} > 50 MeV/nucleon) Eikonal Waves

C.A. Bertulani

Escuela Andina "Física Nuclear en el siglo 21" (26-30 November 2012)

Eikonal Waves: Applications

(sometimes called "Glauber theory")

Roy Glauber 2005 Nobel prize (for another "Glauber theory")

C.A. Bertulani

S-matrices ("Survival" Amplitudes)

Direct Reactions at High Energies Supernovae physics

SN-collapse scenario

- Gravitational pressure balanced by degenerate e- gas up to $M_{ch} = 1.44$
- Electron capture $e^- + (Z,A) \rightarrow (Z^{-1},A) + v_e$

 $e - + p \rightarrow n + v_e$

rates determined by GT-strength

- loss of energy by neutrino cooling
- loss of pressure collapse at 0.3c
- neutrino trapping, decoupling of the core free fall
- storing gravitational energy in neutrinos
- core bounce and outgoing shock wave
- re-heating shock wave by neutrinos and explosion
- successful explosion ONLY if Ye > 0.43

C.A. Bertulani

Escuela Andina "Física Nuclear en el siglo 21" (26-30 November 2012)

Neutrinos

e-+(Z,A) \leftarrow > (Z-1, A) + ν_e

Needs $\left|\left\langle B \right\| \sigma \tau \left\| A \right\rangle\right|^2$ for numerous nuclei

Also the case for neutrino induced reactions

Neutrino detection on Earth difficult

Number of target nuclei Number of target nuclei Neutrino flux Interaction cross section Efficiency

$$N_{ev} = N_t \int_0^{\infty} F(E_v) \cdot \sigma(E_v) \cdot \varepsilon(E_v) dE_v$$

C.A. Bertulani

Theoretical neutrino-nucleus calculations unreliable

C.A. Bertulani

Solution with charge-exchange reactions

Effective interaction V_{NN} (phenomenological)

$$\begin{split} V_{NN}\left(\mathbf{r}\right) &= V^{C}\left(r\right) + V^{C}_{\sigma}\left(r\right)\left(\sigma_{1}\cdot\sigma_{2}\right) + \left[V^{C}_{\tau}\left(r\right) + V^{C}_{\sigma\tau}\left(r\right)\left(\sigma_{1}\cdot\sigma_{2}\right)\right]\left(\tau_{1}\cdot\tau_{2}\right) \\ &+ \left[V^{T}\left(r\right) + V^{T}_{\tau}\left(r\right)\left(\tau_{1}\cdot\tau_{2}\right)\right]S_{12}\left(\hat{\mathbf{r}}\right) + V^{LS}\left(r\right) \left.\boldsymbol{l}\cdot\left(\sigma_{1}+\sigma_{2}\right)\right] \\ \text{Antisimetrization:} \quad V_{NN}\left(\mathbf{r}\right) &= \left[1-\left(-\right)^{l}P_{x}\right]V_{12}\left(\mathbf{r}\right) \qquad P_{x}: \mathbf{r} \rightarrow -\mathbf{r} \\ V^{LS}\left(r\right) \left.\boldsymbol{l}\cdot\left(\sigma_{1}+\sigma_{2}\right) \qquad \text{small and usually neglected} \\ \text{Notation:} \qquad V^{C}\left(r\right) &= V^{0}_{00}\left(r\right), \quad V^{C}_{\sigma}\left(r\right) &= V^{0}_{10}\left(r\right), \quad V^{T}_{\tau}\left(r\right) &= V^{0}_{01}\left(r\right) \\ V^{C}_{\sigma\tau}\left(r\right) &= V^{0}_{11}\left(r\right), \quad V^{T}\left(r\right) &= V^{2}_{10}\left(r\right), \quad V^{T}_{\tau}\left(r\right) &= V^{2}_{01}\left(r\right) \\ V_{12}\left(\mathbf{r}\right) &= \sum_{\substack{K=0,2\\ST}} V^{K}_{ST}\left(r\right)C^{K}_{S}Y_{K}\left(\hat{\mathbf{r}}\right)\left[\sigma_{1}\otimes\sigma_{2}\right]^{K}\left[\tau_{1}\cdot\tau_{2}\right]^{T} \\ \text{K = 0: central force} \qquad \sigma^{S=0} &= 1, \quad \sigma^{S=1} &= \sigma \qquad C^{0}_{0} &= \sqrt{4\pi}, \quad C^{0}_{1} &= -\sqrt{12\pi} \end{split}$$

K = 0: central force $\sigma^{S=0} = 1$, $\sigma^{S=1} = \sigma$ K = 2: tensor force $\tau^{T=0} = 1$, $\tau^{T=1} = \tau$

 $C_0^2 = 0,$ $C_1^2 = \sqrt{25\pi/5}$

Effective interaction V_{NN} (phenomenological)

Love, Franey, NPA 1981, 1985

Two step (proton pickup & neutron-stripping)

¹²C(¹²C,¹²N)¹²B(1+,g.s.) E/A 15 MeV 30 MeV 45 MeV 100 200 70 MeV 100 MeV 20° 10° Θсм

C.A. Bertulani

DBWA again!

$$T_{ch.exch.}(\mathbf{k}',\mathbf{k}) = \int d^3 r \ S(b) \exp[i\mathbf{q}\cdot\mathbf{r}] \left\langle bB | U(\mathbf{r}) | aA \right\rangle$$

$$|aA\rangle = |aA; J_aM_aT_aN_a; J_AM_AT_AN_A\rangle$$

eikonal + few pages of algebra Bertulani, NPA 554, 493 (1993)

$$T_{ch.exch.}\left(\mathbf{k}',\mathbf{k}\right) = \sum_{\substack{K=0,2\\ST}} \sum_{\substack{LL'JJ'\\MM'\mu}} C\left(KS;LL'JJ'MM'\mu\right) \int db \ b \ S\left(b\right) J_0\left(qb\right)$$

$$\times \int dp \, p \, J_{M'-M-\mu}(pb) \, \tilde{V}_{ST}^{K}(p) \, \tilde{\rho}_{LJST}^{aA}(p) \, \tilde{\rho}_{L'J'ST}^{bB}(p)$$

$$\tilde{\rho}_{LJST}^{aA}(p) = \int dr r^2 j_L(pr) \left\langle J_a T_a \right\| \sum_i \frac{\delta(r-r_i)}{r_i^2} \mathfrak{S}_{M}^{LSJ} \tau^T \left\| J_b T_b \right\rangle$$

STRUCTURE INPUT beautifully factorized

$$\mathfrak{S}_{M}^{LSJ} = \sum_{\mu M_{L}} \langle LM_{L}S\mu | JM \rangle i^{L} Y_{LM_{L}}(\widehat{\mathbf{r}}) \sigma^{S\mu}$$

C.A. Bertulani

Charge exchange at forward angles

 $T_{aA \to bB}(\mathbf{k}', \mathbf{k}) = \sum \sum \dots \int db \ b \ S(b) \ J_0(qb) \int dp \ p \ J_{\dots}(pb) \ \tilde{\rho}_{\dots}^{aA}(p) \ \tilde{\rho}_{\dots}^{bB}(p)$ $S(b) \sim 1 \implies p \sim q$ • $S(b) \neq 1$ but largest value of $T_{aA \rightarrow bB}$ occurs when $J_0(qb)$ oscillates in phase with $J_{...}(pb)$ $\implies p \sim q$ Bertulani, NPA 554, 493 (1993) Forward scattering: $q \sim 0$ $f_{aA \to bB}(\theta \sim 0) = \dots \widetilde{\rho}^{aA}(0) \widetilde{\rho}^{bB}(0) \times \int dp \ p \ V_{ST}^{K}(p) \times \int db \ b \ J_{0}(qb) \ \mathbf{e}^{iX(b)}$ $\widetilde{\rho}_{...}^{aA}(0) = \cdots \left\langle A \right\| \sigma^{S} \tau \left\| a \right\rangle \quad \frac{d\sigma}{d\Omega} \left(\theta \sim 0^{0} \right) = \cdots \left| \left\langle A \right\| \sigma^{S} \tau \left\| a \right\rangle \right|^{2} \left| \left\langle B \right\| \sigma^{S} \tau \left\| b \right\rangle \right|^{2}$ $\Rightarrow \cdot \mathbf{If} \left| \left\langle A \right\| \sigma^{s} \tau \left\| a \right\rangle \right|^{2}$ well known. E.g. (a,A) = (n,p) then Fermi and Gamow-Teller m.e. <u>READ DIRECTLY</u> from $\frac{d\sigma}{d\Omega} (\theta \sim 0^{\circ})$

-1-1

Charge exchange at forward angles - Example

Direct Reactions at High Energies Knockout Reactions

Applications of Eikonal WFs: elastic breakup

Elastic: including breakup effects

$$\Psi^{eik}(\mathbf{r}) = S_C(\mathbf{b}_C) S_n(\mathbf{b}_n) e^{i\mathbf{k}\cdot\mathbf{r}} \varphi_0$$

 $S_{elast}(\mathbf{b}) = \left\langle \varphi_0 \left| S_C(\mathbf{b}_C) S_n(\mathbf{b}_n) \right| \varphi_0 \right\rangle$ (Spectroscopy)

Survival amplitude

for projectile at impact parameter b

C.A. Bertulani

Survival amplitudes

for particles C and n at impact parameters b_c and b_n

(Dynamics)

Escuela Andina "Física Nuclear en el siglo 21" (26-30 November 2012)

Stripping

$$\left|S_{C}(\mathbf{b}_{C})\right|^{2}\left(1-\left|S_{n}(\mathbf{b}_{n})\right|^{2}\right)$$

C survives, n absorbed

$$\sigma_{strip}(\mathbf{b}) = \int d\mathbf{b} \left\langle \varphi_0 \right| \left| S_C \right|^2 \left(1 - \left| S_n \right|^2 \right) \right| \left| \varphi_0 \right\rangle^2$$

(d) Composite particles:

$$S_{dif.dis.}(\mathbf{b}) = \left\langle \varphi_8 \left| S_{\alpha}(\mathbf{b}_{\alpha}) \prod_{i=1}^4 S_i(\mathbf{b}_i) \right| \varphi_8 \right\rangle$$
$$\prod_{j \text{ survive}} \left| S_j(\mathbf{b}_j) \right|^2 \prod_{k \text{ absorbed}} \left(1 - \left| S_k(\mathbf{b}_k) \right|^2 \right)$$

Momentum distributions

Bertulani, McVoy, PRC 46 (1992) 2638:

C.A. Bertulani

Longitudinal Momentum Dist. - Example

Example: Astrophysical Capture on Excited States

C.A. Bertulani

Nuclear structure calculations have absolutely zero value if one does not have a good understanding of nuclear reactions.

There is still lots of problems with reaction theory and consequently with experiments.

End of part III