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Abstraet--Sommerfeld's edge-wave formulation of diffraction is employed to show how angular 
distributions for heavy-ion elastic scattering can profitably be interpreted as 2-slit diffraction 
patterns modified by refraction. Just as in peripheral transfer reactions, each "slit" in the elastic 
amplitude is a peripheral E-window, one in the nearside amplitude and one in the farside. 

The nearside/farside decomposition thus has a particularly simple physical interpretation for 
high-energy scattering amplitudes from strong absorbers. We apply it to a variety of light heavy-ion 
data (6Li + 9°Zr, 160 + 2aSi, 12C ~-12C, etc.), to illustrate its ability to clarify such optical pheno- 
mena as Fraunhofer diffraction, nuclear rainbows, potential ambiguities and the forward glory effect. 
We also indicate its usefulness in nonoptical phenomena like the "polarization" amplitude describing 
absorption due to Coulomb excitation. 

This article is dedicated to the memory of John Blair, who contributed so much to our 
understanding of nuclear optics. 
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IN THE E >> V LIMIT 

1. INTRODUCTION 

1.1. Purpose of the review 

Certain features of nuclear scattering, such as fine-structure compound-nucleus 
resonances, involve the full complexity of the nuclear many-body problem, and in general 
can be treated only in a statistical approximation like that of the Hauser-Feshbach 
approach. Direct reactions, on the other hand, occur too quickly to excite complex degrees 
of freedom, and so produce angular distributions which often are determined simply by the 
geometry of the interaction, plus a few mean-field parameters. Because the complex many- 
body effects manifest themselves in the fine-structure of the energy dependence, they can be 
suppressed by energy averaging. This enhances effects like bulk refraction or diffraction, due 
to the "simple" degrees of freedom of the scatterers, which can then be understood in mean- 
field terms. 

Phenomenological local optical potentials are an example of such a mean-field approach, 
and have long proved their usefulness in both light-ion and heavy-ion collisions, as a 
remarkably successful means of producing a "prejudiced phase-shift analysis" of energy- 
averaged angular distributions. In the light-ion, low-energy regime of traditional tandem 
experiments, involving few partial waves, the angular distributions are very "quantum 
mechanical", and one has simply had to accept the optical-potential fits to the data as facts 
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of nature, with little insight into their physical content and even less into how the computer 
search attained them, or how variations in the V, W, R and a parameters of the potentials 
would produce corresponding variations in the angular distributions. 

As heavier projectiles have become available, and as bombarding energies have increased, 
the number of partial waves involved has correspondingly grown, reflecting decreased 
wavelengths and the ever-closer approach to the simplifications of the ray-optics limit. This 
is the domain of semi-classical or WKB approximations, and we wish here to seek out those 
among them which are most appropriate to "high energy" heavy-ion scattering (high in a 
sense to be defined precisely below). Our purpose is to demonstrate how they can be put to 
very practical use, both in understanding the physical (i.e., optical) meaning of these angular 
distributions (such as the fact that they are "pure shadow"), and in obtaining simple analytic 
expressions showing how their characteristic features depend on the optical model para- 
meters and on the bombarding energy. 

1.2. The 2-slit picture of absorbers 

The central key to understanding these high-energy angular distributions is the edge- 
diffraction phenomenon illustrated in Fig. la, which is caused by the stron 9 absorption 
feature of heavy-ion optical potentials in their central regions. (1'2) The point of the figure is 
that any sharp edged absorber, i.e., one which is uniformly black across most of its area, 
produces a diffraction pattern which can be described in terms of"edge waves" alone. (3) 

As an extreme example, consider the familiar sharp-cutoff black-disc amplitude of the 
Blair model, f (O)= iRJl(kRO)/O. Outside its central maximum, its diffraction rings are 
equally spaced in angle, A0 = 7t/kR, a sure sign of a 2 source interference pattern. This is 
difficult to see from the customary Kirchoff integral, which writesf (0) as an integral over the 
area of the disc. However, Born and Wolf t3) point out, following Sommerfeld, that for 
kR >> 1 the area integral can be done by stationary phase, and reduces to an integral around 
the periphery of the disc, describing the edge wave. The central maximum of the diffraction 
pattern thus arises from a "shining rim". As 0 increases, however, the bright sections of the 
rim shrink to two diametrically-opposed bright spots in the "scattering plane", as indicated 

-R0 

Fig. la. Schematic indication of the edge-waves generated by a plane wave incident on a spherical absorber. 
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Fig. lb. Edge waves generated by a black disc, indicating their localization in the reaction plane for 0 outside the 
central diffraction peak. 

in Fig. lb, and shown in detail in Section 2.2.1 below. Mathematically, this simply describes 
the asymptotic form of J1 (kRO), 

f(O) = iRJ 1 (kRO)/O 

- R  _i(LO_lt/4)_ei(LO_r~/4)] ' 
~-- (2~zk0)1/2 [e (L = kR, LO > 1), (1.1) 

but physically its two running-wave components describe the edge-waves originating from 
the two bright spots, whose fixed separation At ~ = 2L is responsible for the constant period, 
A0 = 2n/Af, of the diffraction pattern. This will become even clearer in Section 1.4 below 
when we obtain the analogous scattering amplitude for an absorber with a "rounded" edge, 
of finite thickness a. Provided that a << R, this amplitude is also a sum of two such terms, but 
each one has the diffraction-fan shape of transmission through an t~-window of width ka, 
making its physical meaning unambiguous. 

Any such elastic-scattering diffraction pattern can thus profitably be viewed as a 2-slit 
interference pattern: it is the fixed separation between the two slits which determines the 
(constant) period A0 = rc/kR of its Fraunhofer diffraction pattern, while the width ka of the 
E-window determines its angular envelope (single-slit pattern). Since the slit-separation 2R is 
fixed, the variations observed in heavy-ion angular distributions must arise primarily from 
changes in this single-slit pattern. Our review is consequently a study of the two t~-window 
diffraction patterns, which we identify with the "Near-side" and "Far-side" components of 
the full scattering amplitude. In particular, any parametrization of the full angular distri- 

] + ,  

Fig. lc. Identification of Near (positive-angle) and Far (negative-angle) trajectories. 
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bution in terms of potential parameters is found to be very efficiently done in terms of these 
two component amplitudes separately. It is this which makes the N/F decomposition 
particularly useful for strong absorbers. 

The review is thus intended as a practical aid to optical-model practitioners, but also as 
an attempt to provide as much insight as possible into the significance of features like 
diffraction oscillations, absorbed rainbows, exponential shadows and orbiting. We are 
following in a time-honored path of semi-classical footsteps, which has generated a sub- 
stantial literature, beginning with the classic work of Ford and Wheeler t~) on real-potential 
scattering. The most significant advances made since that time are, in our opinion, those of 
Frahn and collaborators tl) (the strong-absorption approach) and of Knoll and Schaeffer iS) 
(the refractive approach, but with diffraction included via complex Cs). 

Unfortunately, neither approach has been widely applied in the analysis of data. That of 
Knoll and Schaeffer (a semi-classical technique for evaluating optical potential scattering 
amplitudes), which uses the powerful and elegant methods t6'7) of complex angular 
momentum, is the more fundamental of the two, but the complex-plane mathematics are 
somewhat forbidding, and have not previously lead to simple closed formulae suggesting 
how the scattering amplitudes depend on the optical potential parameters. 

In contrast, Frahn's overriding purpose, sometimes pursued at the price of oversimpli- 
fication, was precisely to obtain "closed form" expressions for the scattering amplitude. 
They were not based on optical potentials at all, but rather on parametrizations of the S- 
matrix elements S(f) in f-space--an attractive idea in view of the known fact that optical 
potentials generally provide an "overparametrized" form of the scattering amplitude, as 
shown by the existence of different but "phase-equivalent" potentials. 

As far as we are aware, it was Frahn who first recognized the central importance of the 2- 
slit or edge-wave interpretation of the scattering amplitude for strong absorbers, but by 
great misfortune he was ahead of his time in two respects. For one, the physical significance 
(independent of the edge-wave phenomenon) of the Near-side/Far-side decomposition had 
not yet been appreciated when Frahn began his work, so there was no general framework 
available to fit it into. Secondly, the experimental data available at that time for elastic 
heavy-ion angular distributions were largely limited to the very small-angle region of the 
"Fresnel oscillations", which is so Coulomb-dominated as to be only minimally sensitive 
even to peripheral features of the nucleus-nucleus interaction; it was to these small-angle 
features that most of Frahn's attention was directed. It is only presently that data (at least 
for the lighter-ion systems) are becoming available at energies high enough to reach impact 
parameters where Fraunhofer interference and possible refractive effects like nuclear rain- 
bows are becoming important; Frahn's insight into the two-slit nature of the angular 
distributions was never really put to an interesting test in his parametrized models. 

We have learned much from both the Frahn and the Knoll and Schaeffer approaches. Our 
real purpose in the present review is (1) to translate their rather obscure mathematical 
formulae into the simple physical language of the 2-slit diffraction picture, (2) to generalize 
the Frahn picture (using some of the Knoll and Schaeffer ideas) to include refractive effects 
more realistically than he was able to in his simple parametrizations, and (3) to show how 
both approaches can be seen as particular applications of the more general Near-side/Far- 
side decomposition technique. We do this by using optical potentials to generate the phase 
shifts necessary for such a decomposition, not because this is necessarily the most funda- 
mental means of generating scattering amplitudes, but for the practical reason that most fits 
to elastic data are currently done via optical potentials, and because fast optical codes exist 
to which the Near/Far decomposition can readily and inexpensively be appended. Further- 
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more, the "equal geometry" parametrizations of the Frahn type are distinctly too limited to 
provide adequate fits to current heavy-ion data. It seems to us that Frahn's search for a 
"model-independent" phase-shift parametrization to be fitted to data is a very sensible goal. 
If it is ever to be achieved, it will certainly have to be in Near/Far terms, like the ones 
generated (1) so far. The optical potential offers itself as a convenient crutch for the moment, 
to permit a familiarity with Near/Far decompositions to be developed. But it is, funda- 
mentally, merely a special (and local) phase-shift parametrization of a somewhat obscure 
sort; a more direct one may someday be found. 

1.3. Examples of Near-side/Far-side decompositions 

As Fig. lc indicates, Near-side trajectories are the positive-angle ones (like Coulomb 
trajectories), corresponding to a repulsive interaction or reflection; Far-side trajectories are 
negative-angle ones, passing behind the target, caused in general by a combination of 
diffraction and attractive-interaction refraction. Any scattering amplitude can be written 
(in a manner defined precisely below) as a sum of Near-side and Far-side components, 

f(O) = fN (0) +fF (0), 

whose most important property is that the Fraunhofer diffractive oscillations occur in 
neither fN nor f e, but only in their interference; other types of interference, such as rainbow 
minima, occur in eitherfw orfF alone. 
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Fig. 3c. Same as 3b, with V = 0. a~q(O) ~- trv(O--201/4), where 01/4 is the Coulomb shift. 

As a prototype example of such decompositions, Fig. 2 shows an optical model angular 
distribution recently fitted to data ts~ for 156 MeV 6Li o n  9 ° Z r ,  and Fig. 3a shows a very 
similar one calculated for 200MeV 160 on 5aNi, assuming a "refractive type" optical 
potential, V = 100 MeV, W = 50 MeV. The Near/Far  decomposition for the 6Li case will be 
given later. For  the moment we consider the 160 + 58Ni case (even though the potential is 
not yet known and is probably not "refractive") because its larger Coulomb repulsion 
separates the "Fresnel" oscillations at very forward angles more clearly from the "Fraun- 
hofer" oscillations around 35 °. Figure 3b shows the same angular distribution in the form of 
a logarithmic plot of da/dO = 27r sin 0 dcr/d~, rather than the customary (dtr/df~)/(dtr R d ~ )  
of Fig. 3a; its advantage is that any exponential falloff as a function of angle shows up clearly 
as a straight line.* This figure also includes the "cross sections" 

arq(0) = 27r sin 01 frq(0)12 
and 

aF(0) = 2n sin 01 fv (0)I a, (1.2) 

and shows directly that the diffractive oscillations near 35 ° result from Near/Far  (N/F) 
interference between otherwise-smooth amplitudes. For  comparison, Fig. 3c shows the same 
cross-sections, but with V = 0. This is scattering by a pure absorber (plus the Coulomb 
field). It is entirely Near-dominated, with no refraction whatever; furthermore arq(O) and 

* Note that  the "Fresnel max imum"  of Fig. 3a, at 14 °, is reduced to a "shoulder" at the same angle in da/d0. It is 
this shoulder in all subsequent da/d0 plots which marks  the transit ion from Coulomb to nuclear scattering. 



Nearside and Farside: The Optics of Heavy Ion Elastic Scattering 

"Refractive" 
Potential 

Low I ......... "'.... N 
Energy l " ~ F  

"Diffractive" 
Potential 

"... 
"'"'""".. N 

~ F  

111 

High Energy 
"A. 

";. N 

"~':'~... N 

0 0 

Fig. 3d. Schematic caricature of tr N(0) and t7 F(0) for refractive and diffractive potentials. 

aF(0 ) are parallel straight lines on a logarithmic plot. Figures 3b and 3c thus show that, for 
this interaction, a N (0) and a F (0) both decay exponentially (the entire angular range beyond 
the Coulomb shoulder is classically forbidden), with slopes which are equal when V = 0, but 
different when V ~ 0. 

To insure that the reader does not "miss the forest for the trees", we provide in Fig. 3d a 
schematic indication of the behavior of aN(0) and aF(0) for the two extremes of a 
"refractive" potential (roughly, V >> W, in Woods-Saxon terms) and a "diffractive" poten- 
tial (V < W). The strong refraction of the former is seen to give aN(0 ) a much larger slope 
than that of trv (0) (at energies well above the Coulomb barrier), so that they cross one 
another "quickly" in 0, producing the localized Fraunhofer oscillations of Fig. 3b. In a less- 
refractive potential, tri(0) and OF(0) are closer to being parallel, as in Fig. 3c; if their 
magnitudes are comparable, this will cause a much wider range of Fraunhofer oscillations, 
as in the familiar black-disc example. 

We remark in passing that all N/F decompositions presented here were computed with a 
VAX version of the PTOLEMY computer code, which is available on request from the 
University of Wisconsin. 

1.4. Geometry-dominance in Born approximation 

The underlying N and F amplitudes are thus seen to be remarkably simple. Why should 
this be, and what determines the slopes of their exponential falloffs? By far the simplest hint 
can be obtained by recourse to the Born approximation. Since Ecm/V is only 1.5 in this 
example, Born is certainly inadequate here (as we will see explicitly), but it is useful at higher 
energy, and its form provides exactly the type of insight we are after. For a spherically 
symmetric potential it gives the scattering amplitude 

f (0) = -- (2[t/h 2) .foJ° (qr) V(r)r 2 dr 

= (iM/hq 2) [-o~ ( eiqr _ e-iqr)V(r)r dr. (1.3) 
J o  
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Fig. 4. Pole positions of W-S potential in the complex r-plane. 

The two terms in the integral correspond exactly to the Far-side and Near-side amplitudes. 
To evaluate them most simply we note, with Amado et al. (9), that an essential feature of the 
nuclear matter distribution is that it is "thin-skinned", i.e., that its surface thickness a is small 
compared to its radius R. This feature is traditionally represented by a Woods-Saxon shape 
for the radial matter distribution,* 

V + i W  
U(r) = 1 + e  (r-a)/a" (1.4) 

As Ericson remarked long ago "°), the thin-skin feature is expressed in analytic-function 
terms by the fact that V(r) has poles in the complex r-plane, at the points 

R ,  = R + irran, n = 1, 3 . . . . .  (1.5) 

shown in Fig. 4..We presume this to be a general feature of leptodermous potentials, and 
follow Amado et al. (9~ in noting that, in the angular range 

1 R 1 
- -  << 0 << - - - -  (1 .6)  
lrka a rrka' 

i.e., in the range covered by roughly the first 10 diffraction oscillations, the integrals in eqn. 
(1.3) can be evaluated by using 1st and 4th-quadrant contours in the r-plane. In the angular 
range (1.6), they are found to be dominated by the residues of the n = _ 1 poles of (1.5), 
giving 

f (0) = fv (0) +fN (0), 

where, provided that V(r) and W(r)  have the same geometry, 

fF(0) = CR 1 e iqR,, 

(Equal geometry, Born Approximation) (1.7) 

* The argument is greatly simplified by neglecting the Coulomb interaction at this stage; its effect onfN(0 ) and 
fr(O) is well known to be just a shift in angle, which we include in eqn. (1.10) and verify in Section 3.5. 
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fN (0) = CR* e-iqR~ = _ f ~  (0), 
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C = - (87r/a/h 2) (V + iW) (aR/q ) .  

That is, for small angles where q(O) ~_ kO, 

f s  (0) = C(R -- izra) e -  ikRO e -  ~kaO, 

fF (0) = C(R + ina) e ikR° e-~kaO. (1.8) 

The result (1.7) shows in strikingly simple fashion how the edge geometry of the potential 
dominates the scattering in the E >> V limit, where refraction becomes weaker than 
absorption. In fact, (1.7) and (1.8) contain the essence of our entire optical message. 
Although given only for positive angles, these results are symmetric about 0 = 0, and in fact 
describe nothing more than the two-slit diffraction pattern indicated in Fig. la. The surface 
region at each limb of the target acts like a slit or f-window (one N and one F), generating a 
diffracted wave from the region where the potential varies most rapidly with r (i.e., where 
- V'(r), the radial force on the projectile, is largest). Each f-window, of width ka, produces a 
diffraction fan of angular width ~ 1/ka, with an envelope _~ exp-r~ka]O]. The path length of 
the far-side ray exceeds that of the near-side ray by the distance 2RO, travelled along the 
surface of the scatterer (see Fig. la), making their phase difference 2re (2R0/2) = 2kRO, as 
indicated by the exponential factors in (1.8). Thus the condition for maxima in the 2-slit 
interference pattern is the usual 

n2 = d sin 0 _~ 2RO, 

so that the angular separation between successive maxima (An = 1) is A0 = 2/2R, i.e., 

AO = kR Lma x (1.9) 

as usual for Fraunhofer interference. In the limit that a --* 0, the single-slit patterns do not 
decay exponentially and combine, as expected, to give the customary JI(LO)/O angular 
distribution of a sharp-edged black disc. 

Thus it becomes clear why the Near/Far decomposition is so useful for the amplitude of 
an edge-scatterer: the N and F components each describe the diffraction pattern of a single 
slit or f-window, which is clearly a simpler pattern to study than the full cross-section 
containing their interference. 

This two-slit picture is the subject of our entire study. Its essential features are captured by 
(1.7), which is certainly correct at sufficiently high energies, and has had great s u c c e s s  19) in 
describing proton scattering by nuclei above 500MeV. High-energy electron-nucleus 
scattering is similarly geometry-dominated, and could also doubtless be effectively de- 
scribed in N/F terms. However, nucleus-nucleus scattering in the few hundred MeV range, 
which concerns us here, is not yet geometry-dominated. Refraction (both Coulomb and 
nuclear) still plays a substantial role in determining the orientation and shape (asymmetry) 
of the single-slit patterns at these energies. Most of our efforts in subsequent sections will be 
devoted to understanding these refractive effects, which can roughly be summarized by the 
following improvement on (1.8) (again valid only for equal real and imaginary geometries): 

fN(0) oC e -ikRO e -~Nka(O-01/,) 

fF(0) oC e ikgO e -flFka(O+Olm), (1.10) 
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0a/4 = tan-  l(2tl/kR) ~- Veoul(R)/E, (1.11) 

0 < flF < fN ~< n (1.12) 

are limits on the slope parameters for attractive real potentials, showing that attractive 
refraction makes the Near slope steeper than the Far.* This, combined with the Coulomb 
enhancement of a N over aF, given by 

In aN (0) = 2(fin + flF)ka01/4 <~ 4nka01/4, (1.13) 
av(O) 

(indicated in Fig. 3b) shows how the N/F "crossover" is brought about by refraction 
superimposed on absorption. This predicts, in fact, that the crossover occurs at the angle 

0cross = f l N + f l F  ~1/4 '~  f l N + f l F  Vc°ul(R) (1 .14)  
f l N - - f l F  --  f l N - - f l F  E 

also indicated in Fig. 3b. Clearly this will produce a visible effect on the cross-section only if 
0cross < n; in particular, ifflr~ = flF, as in the case of pure absorption (V = 0), 0cross ~ ~ and 
no crossover occurs at all. Much oversimplified estimates of the slope parameters (not often 
valid) are 

fin ~- n - t a n - l ( W / V ) ,  (Caution!) (1.15) 

fiE ----- tan-X (W/V). 

They are incorrect in not containing energy dependence, but do correctly show that 
fin =f lv  if V = 0. 

Altogether, these formulae provide an example of how semiclassical methods can provide 
useful estimates, in the form of N/F decompositions, of the dependence of heavy-ion elastic 
amplitudes on optical-potential parameters. Our purpose below is to explain the origin and 
physical significance of formulae like these, and to provide their more realistic generaliza- 
tions. In particular, we are not inquiring into the origin of the potential itself, folding or 
otherwise. Rather, given a local optical potential, we merely investigate its optics.t 

1.5. Further examples 

An example of heavy-ion scattering by another "refractive-type" potential is given in Fig. 
5, which shows how the angular distribution of one of the potentials (F75), employed at low 
energy by Cramer et al. {11) for 160 31-2ssi scattering, changes with bombarding energy.:~ At 
energies near the 25-MeV Coulomb barrier (Fig. 5a), the scattering is N-side dominated 
over the entire angular range because the Coulomb field keeps all trajectories outside the 
nuclear force range. At higher energy (Fig. 5b) both the Near and Far sides are modified by 
the nuclear potential, the strong nuclear attraction producing N/F crossover at large angles. 

* Both fin and fir depend on E (see below) and ~ n  as E ~ oo. 
J" In the spirit of Goethes'  observation on phenomenology: "Got t  gibt uns die Nuesse, aber er bricht sic nicht 

auf." 
:~ In this and most subsequent angular distributions, we plot da/d0 = 2n sin 0 da/d.Q, rather than da/daR, to 

make exponential falloffs readily recognizable. 
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Finally, at the still higher energy of 215.2 MeV, the crossover has moved to forward angles 
and become very pronounced--in disagreement with the data at this energy, incidentally. 

This potential does fit the data below E L = 80 MeV, but its deep real potential (combined 
with equal real and imaginary geometries) gives too strong a crossover and subsequent Far- 
side dominance at higher energies. 

Figure 6 provides the very interesting N/F decomposition for the "diffractive-type" El8 
potential of Cramer et al., (1 l) whose much weaker real potential does fit the 215.2 MeV data. 
This potential does not produce a crossover, but rather generates parallel aN(O ) and trF(0 ) 
falloffs beyond 30 °, by an ingenious scheme to be analyzed in detail below. By making 
aN(O ) ~_ trF(O ) over the entire angular range from 30 ° to 80 °, this potential fills that entire 
angular range with diffractive oscillations. 

As a final preliminary example, Fig. 7 shows the angular distribution which fits the data of 
Put and Paans (12) for 79.5MeV ~'s on 9°Zr (measured out to about 150°). Its most 
important feature is the broad minimum-and-maximum at about 90 ° and 120°; they are 
clearly seen to be properties of the Far-side amplitude, and appear to be the best evidence so 
far available for a "nuclear rainbow", which will be discussed in more detail below. They 
provide one of the more interesting examples of structure due tofN (0) orfv (0) alone, rather 
than to their interference. In this case fF(0) is not edge-dominated, for its 90 ° minimum 
results from the interference of a peripheral-f with an internal f-contribution. 

2. ELEMENTARY SEMI-CLASSICAL TECHNIQUES AND 
IMPORTANT OPTICAL THEOREMS 

Although nuclei look like cloudy crystal balls to low-energy neutrons, they look more like 
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black crystal balls to other nuclei. In fact, it is more subtle than that, for the detailed radial 
shapes of their refraction and absorption are critical to the resulting angular distributions, 
with such properties as "surface transparency" playing an important role. crN(0 ) and aF(0 ) 
become quite simple in the high energy range, roughly defined by E > V, but to understand 
how and why, we need a few techniques and theorems from semiclassical or short- 
wavelength optics. These techniques provide an intriguing generalization of the customary 
textbook approach to optics, where refraction and diffraction are generally viewed as 
distinct phenomena. The essential point is that high energy heavy-ion scattering occurs 
almost entirely in classically forbidden angular regions, i.e., in the shadows cast by the 
peripheral f-windows. The corresponding semi-classical impact parameters are complex, 
and at complex impact parameters diffraction and refraction merge into a single pheno- 
menon, for which the customary optical terminology is not always adequate. In this section 
we briefly review the necessary technology and obtain the theorems necessary to understand 
the features encountered in the examples of the previous section. Those readers interested 
only in the analysis of specific angular distributions can skip to Section 3, or even to Section 
4. 

2.1. The stationary-phase or saddle-point approximation to oscillatory 
integrals 

Scattering amplitudes from spherically-symmetric scatterers are typically obtained in the 
form 

f (q) = ~ 9(r) e iqr dr, (2.1) 

where r ranges over all scattering centers in the target and the exponential "retardation 
factor" simply provides each center with its correct phase relative to the others. In the high 
energy limit, q ~ oo and the integral will vanish entirely because of the high-frequency 
oscillations of the exponential factor, unless 9(r) contains compensating oscillations. If it 
does, the integral will be nonzero only at those q's for which this compensation occurs. 
These are just the q's corresponding to the classical-mechanics trajectories (or the 
geometric-optics rays) for this particular potential, and this is indeed the standard method 
for extracting the geometric-optics result from a general wave-mechanics scattering problem 
in the short-wavelength limit, kR  >> 1. 

The standard form of the mathematical problem is an integral of the type 

I = ~ e i¢Ix) dx, (2.2) 

generally with infinite limits, with tk(x) real on the line of integration and analytic in some 
region surrounding it. If ~b(x) varies rapidly with x, the integral will be small, but if it has 
maxima or minima on the line of integration, these extrema will contribute the bulk of the 
integral, since they are just the points where the integrand fails to oscillate. If ~b'(Xo) = O, 
then near that point 

~b(X) "~ •(Xo)+ q~"(XO)(X--X0)2/2. 

If this is the only stationary point, the integral will come mainly from x = Xo, and it is 
customary to extend the limits to + 0% since the contributions of far away points are 
strongly suppressed by oscillations, giving 

I "~ e i(°~x°) [~  e i4~''(x°)(x-x°)2/2 d x  = [2rci/(a"(Xo)]l/2 ei4~(Xo) (2.3) 
. J -~  
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If the stationary point occurs off the line of integration, at x = z o, it is known as a saddle 
point, and a result of exactly the same form, evaluated at Zo, is obtained by deforming the 
contour to pass through Zo; the technique is then known as the method of steepest descents. 
In fact, even if the integrand contains a slowly-varying factor A(x) in addition to the 
exponential, the approximation 

where 

A(x) e i4~(x) dx ~- [2~i/qb"(Zo)] 1/ZA(zo) e i4'(z°) 

~ ' (Zo)=0,  (2.4) 

is customarily employed, and is the one we shall use here. Its most frequent use is in the 
evaluation of an integral over impact parameters or :-values. 

2.2. The Near/Far decomposition 

2.2.1. Physical ideas and approximate formulae 
This decomposition of scattering amplitudes was employed by Ford and Wheeler ~4) for 

purely practical mathematical reasons; the physical significance offN andre  was recognized 
only later: 1'13-15) Perhaps the most physically direct way of being convinced of this 
significance is by considering a scattering (or reaction) amplitude in the standard form 

f(O) = ~ e ik:'r V(r)~ +)(r) d3r. (2.5) 

Choosing the z-axis along the incident k direction, and letting kf and r make angles 0 and 0' 
relative to it, respectively, kf .  r = kfr x (cos 0 cos 0' + sin 0 sin O' cos ~b), with ~b as the azi- 
muthal angle o f r  relative to kf : ~b = 0 and ~b = rc are points in the reaction plane containing 
k and kf. If V(r) is a central potential, V(r)q~¢ (r) will have no ~b-dependence, so the q~- 
integral can be done immediately, 

~0 2~ f(O) = SSr2 drd(cosO')e-ik:rc°s°e°s°'V(r)dpk+)(r,O) e-ik:rsinOsinO'c°SO d~ 

= 2n S~ r 2 dr d(cos 0') e-ik:r cos 0cos 0' V(r)q~+) (r, O) Jo(kfr sin 0 sin 0') 

= 2re ~ b db dz e -ik:c°s oV(b, z)q~tk+ J(b, Z)Jo(k:b sin 0), (2.6) 

with b = r sin 0', z = r cos 0'. Recalling that, for large : ~_ kfb, 

Jo[(2: + l)sinO/2] ~- Pe(cosO), : > Icsc01, 

we have simply obtained a form of the partial-wave expansion of the scattering amplitude, 
with the sum over : replaced by an integral over impact parameter b. This is not of great 
interest in itself, but if we backtrack for a moment and consider the high-energy and small- 
angle limit, where kfb sin 0 - :0 >> 1, we can do the ~b-integral in the stationary-phase 
approximation. Since the exponent :0cos  ~b is stationary where ~b = 0 and ~b = re, the 
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stationary phase rules give 

;~ n e-ie0e°s¢ d$ f2~i~1/2 ( 2hi ~1/2 ee 0 
\ - f o )  

= \)--~] [e-i(e°-"/4)+e i~e°-~/4)] 

/ 2 "~u2 
: 

'-' 2 ,So(tO), f > IcscOI. (2.7) 

The final result is of course the same as eqn. (2.6), but it illustrates an interesting and 
important property o f f  (0) in the large-kr limit: if f >> 1, the only parts of the scatterer which 
contribute to f(O) are those in the scattering plane, the tk = 0 ones [exp(-ifO)] lying on a 
Near-side trajectory, and the q~ = 7t ones rexp(+ ifO)] lying on a Far-side trajectory, as 
indicated in Fig. 8. 

The result can'even be stated more explicitly in terms of the "edge wave". For large kR, the 
f-integral of eqn. (2.6) can be done (forfN (0) orfF (0) separately) by steepest descents, and so 
will come from just a few key f-values. For a strong absorber, as we saw in connection with 
Fig. lb, there will be a single peripheral f-value for each side-amplitude, which describes the 
edge wave; the circle of origin of this edge wave is indicated by the vertical longitude-circle 
of Fig. 8. Very near the forward direction (i.e., within the forward diffraction peak), where 
f0 < 1, the "scattering plane" is not well-defined, and the edge wave originates from this 
entire vertical circle; at these angles the stationary-phase approximation of eqn. (2.7) fails. 

Beyond the diffraction peak, however, where f0 > 1, this stationary-phase approximation 
becomes steadily better. The Near and Far contributions then become definable and arise 
from ever-more-localized regions of this circle of longitude. The denominator arising from 
the stationary-phase approximation shows, in fact, that the contributing J-range is At~ 
(f0)-1/2, so as 0 increases, these regions shrink to the diametrically opposed limb points of 
Fig. 8, whose fixed separation determines the (constant) period of the Fraunhofer diffraction 
pattern. 

The N/F decomposition is more customarily approached through the partial wave 
expansion of the scattering amplitude, 

1 (e2i6(e) 2 ~  f(O) = ~ - k ~ ( 2 f + l )  - 1)PC (cos O) ~ _ ~ (2f + 1) e2i~(~)Pe (cos 0), (2.8) 

Fig. 8. Schematic indication of the edge waves, which originate in azimuthal-angle intervals of width AS -~ 
(f0)- 1/2, centered at the scattering-plane points q~ = 0 and th = n. 
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dropping the 6 ( 1 - c o s 0 )  term. Substantial insight into many features of the angular 
distribution is obtainable by writing the "standing wave" P :  (cos 0) as a sum of two running 
waves (in 0). For large : this can be done by using 

P: (cos0) - \ ~ )  c o s ( g 0 - n / 4 )  = \ 2 - ~ s i n 0 /  [ei(g°-n/4)-.Fe-ite°-n/4)]. (2.9) 

Inserting this into (2.8) splits f (0 )  into two sums, the first being exactlYfF (0) and the second 
fN (0), showing that they are "operationally" distinguished by the sign of the component of 
the orbital angular momentum normal to the scattering plane: it is parallel to ki x kf for the 
Far side and antiparallel for the Near side. 

In fact, if the partial-wave sums are approximated by integrals (valid only if kR >> 1), we 
have 

1( 1 f :  e,t2ac:) c:o_n/4) ] fN,F (0) ~ ~ \ ~ , ]  :,:2 dr. (2.10) 

This important formula shows that fN(O) and fv(0) are nothing more than Fourier 
transforms of S(:) = exp [2i6(:)]. 

In the semiclassical limit, the integrals can be approximated by the stationary-phase 
method, 

CN'F e T-ieNo'Fo, (2.11) 
fN,F (0) -- (sin 0) 1 / ~  

with 
N,F 1/2 

Cr~,F = CNF(O) I(. :~" ~ e2,~(:~, ) (2.12) 
' = ik ~2~O'(dN'F)J ' 

with :0 N'F determined as a function of 0 by the famous deflection function equations, 

Near: O(:No) = 2 d6 d: ] :=:N°' (2.13a) 

d6 
Far: O(:Fo) = -2~--~ :=Co" (2.13b) 

We have isolated the C(0) factor in (2.11) because for 0 in a "deep shadow" region, as is 
generally the case for high energy heavy ion scattering, C(O) is nearly constant because :o(O) 
is nearly constant. 

2.2.2. Essential properties 
We have reviewed this familiar material in order to list the following important properties 

of the near and far amplitudes: 

2.2.2.1. Exploring the potential, The deflection function equations (2.13) are equivalent to 
"trajectory equations" in classical mechanics. The simplest physical situation is that in 
which there is one saddle point, :oN(0), for the Near side and one, :or(0), for the Far side. If 
this is so, the entire N and F amplitudes are given explicitly in terms of these saddles by 
(2.11), and (2.13), which then provide a 1-to-1 relation between 0 and : or 0 and b = f/k. It is 
in this way that one can think of the angular distribution as "exploring the potential" in the 
short wavelength limit, since each 0 comes from a specific trajectory identified by : or b. 

Since b is an asymptotic property of the trajectory, however, it is more informative to 
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relate it to a distance of closest approach, ro, as Knoll and Schaeffer ~5) point out. The 
classical distance of closest approach is that distance at which the radial motion stops, so the 
total energy is just potential plus angular kinetic energy, 

h2~2 h2k2 b2 ~o)fb~2' 
E = V ( r o ) + ~ r ~  = V(r°) + 2 ~ r  2 - V(r°)+E (2.14) 

i.e., 

b(r°) = r°n(r°) = r°~/1 V(r°)E ' (2.15) 

where V(r) = VNucL(r)+ Vcoul(r). Thus (2.13) and (2.15) relate 0 and to--though of course, 
only to within a wavelength or so. Incidentally, we note that the association of a given 
penetration distance r o with a specific angular region is impossible without the N/F 
decomposition, since rNo(O) and fro(O) are in general different. 

2.2.2.2. Single-trajectory dominance o fa  N and aF. The calculation of aN(0) and aF(0) is a 
simple extension of any optical-model code, and can be done as routinely and automatically 
as a normal optical-potential calculation. IffN (0) andfv (0) are each dominated by a single 
trajectory, i.e., by a single (usually complex) ~-value, then their calculation by the above 
generalization of an optical code is equivalent to doing the semiclassical calculation 
involving the complex ~-value, which is (given the speed of modern optical codes) generally 
considerably more difficult. 

It is the edge-dominance or 2-slit nature of most heavy ion angular distributions which 
does make fN and fF dominated by a single trajectory each; this not only makes the N/F 
decomposition useful, but even assigns to each of them the physical significance of a single- 
slit diffraction i)attern. 

2.2.2.3. Running waves in angle. Equation (2.11) makes it clear that fN and fF are directly 
related to running waves travelling in opposite directions around the nucleus; this in turn 
directly relates them to Regge poles tT~ whenever these are an important feature of the 
scattering amplitude. 

2.2.2.4. Real phase shifts and rainbow shadows. In the special case of scattering by a real 
optical potential (which has little relation to heavy-ion collisions), the phase shifts 6(~) are 
real, and the equations (2.13) define the usual deflection function, which typically has the 
shape (at energies above the resonance region, where the potential "pocket" has filled in) 
shown in Fig. 9, together with its corresponding nuclear phase shift 6(~). 

Incidentally, the sign convention employed in such figures is not that used in eqn. (2.13). 
The near amplitude is generated by reflection, generally from a repulsive interaction whose 
phase shift is negative but increasing with E, making 0 = 26'(E) positive, as shown. The far 
side, if generated by a real potential, must be due to an attractive interaction, whose phase 
shift is positive but decreasing with ~, 26'(E) < 0. Since the physical 0 is positive, (2.13b) 
correctly desoribes a saddle point ~o at which 6'(fo) < 0, leading via this equation to 0 > 0. 
However, in drawing Fig. 9, one uses the convention 0(~)= 26'(~) for both N and F, 
meaning that the positive-angle part of Fig. 8 describes fN(0), while its negative angle part 
describesfF (0). 

The two angular extrema OcR and ONR, the Coulomb and nuclear rainbow angles, define 
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______ \ ~ Angle 

/ / / / / C l a s s i c a l l y  Forbidden Angles ~ /  

Fig. 9. Schematic indication of the nuclear phase shift and its corresponding deflection function. The "Near" and 
"Far" labels both apply to the 0(~) graph only. 

an angular range, 

0NR < 0 < 0CR , (2.16) 

within which the equation 26'(g) = 0 has the real-g solutions indicated by this 0(g) [or g(0)] 
curve, g(0) in this real-potential case has two solutions for each 0, whose interference 
produce the familiar "Airy oscillations" on the bright sides of the respective rainbows in the 
range of eqn. (2.16). However, the equation 26'(g) = 0 can still be solved for g even outside 
this range; this is the classically-forbidden angular range, on the dark sides of the rainbows. 
The g-solutions here are complex; for 0 > 0ca they lie in the lower half of the g-plane, 
Im(g) < 0, and for 0 < 0NR they are in the upper half of the g-plane. Thus in general they 
produce amplitudes which decay in angle as 0 penetrates into the forbidden or shadow 
r eg ion ,  

IfN,F(0)I 2 ~ e -j2tnu'°Nyl°. (2.17) 

In general Ira(go) will itself depend on 0, giving a non-simple decay curve; the classic Airy 
approximation, e.g., gives exp (-0a/z). 

The magic feature of nuclei, however, is their thin skin: a << R. As the argument of eqn. 
(1.7) suggests, for an "edge scatterer" in this sense, go(0) is nearly constant (at least for angles 
in the deep-shadow region). Hence the important theorem: "3-dimensional leptodermous 
scatterers have exponential shadows". This appears to be the physical origin of the 
exponential aN(0) and trF(0) seen so frequently for high-energy scattering by W-S 
potentials: the running waves exp (___gO) do their running at a fixed (surface) f-value in 
shadow regions, leading to exponential damping in angle. As we explain more fully below, 
the existence of expoaential damping arises from an "orbiting" phenomenon,* while the 
magnitude of the damping constant, 2Im(go), is determined by a combination of diffraction 

* And not, e.g., from the fact that the optical potential has an exponential tail ! 

PPNP-E 
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and refraction, demonstrating how thoroughly refraction and diffraction become inter- 
mingled at complex :-values. 

2.2.2.5. Absorption and diffractive shadows. A customary optical shadow is caused by an 
absorber intercepting the beam, and the illumination which does reach the shadow-region 
arrives there by diffraction, having been channelled around the absorbing surface by 
damped running waves. These are thus again described by complex :-values, arising from 
solving the trajectory equations (2.13) for complex potentials and complex phase shifts. 
Strong absorption dominates heavy-ion scattering at energies well above the Coulomb 
barrier; it is this, of course, which makes almost all angles except 0 = 0 classically forbidden, 
and is responsible for so many of the near and far angular dependences being simple 
exponentials. In most heavy-ion cases, fN(O) and f~(O) simply describe the diffraction 
pattern of a peripheral :-window or "slit" defined by the surface region in which V(r) is 
changing most rapidly. 

2.2.3. The correct mathematics, d la Fuller 
The seminal work on the N/F decomposition of elastic amplitudes was done by Fuller, tl 6) 

who pointed out that the correct definition of running waves in 0 is given by 

1 -Qt(cosO)]--* (,, , - .  ~l exp '+ iF( :  + O--n~4 Q~+) =~ Pt(cosO)+_ n de-~ookzmsmtv ( L\ ' 
(2.18) 

which possess the important symmetry 

Q~-)[cos ( - 0)] = Q~+)[cos 0], (2.19) 

with - 0  a negative real angle arrived at from 0 via a path in the upper half 0-plane. The 
correct decomposition of P: into running waves is thus 

Pc (cos 0) = Q~-) (cos 0) + Q~+) (cos 0), (2.20) 

and, given any amplitude 

1 
f(O) = ~ - ~  (2: + 1)S(:)P¢ (cos 0), 

we have its near and far amplitudes in the form 

with the properties 

and 

TN,r(o) = 2~Y~ (2:+ 1)s(:)Q} -v-) (cos 0), (2.21) 

i n ( -  o) = fr(0)- (2.23) 

Actually, the difficult part of the elastic amplitude is the Coulomb part, which cannot be 
written in partial-wave form. By a careful consideration of its analytic properties, however, 
Fuller (16) obtained its N/F separation in closed form. It is his decomposition which has been 
employed in the computer code used for all calculations shown here, whosefN andfF include 
the point-Coulomb contributions. It is this, of course, which makesfN (0) diverge like 0- 2 for 
small 0, and also gives IfN(0)l 2 > >  IfF(0)l 2 at small 0. 

f(O) = fN (0) +fF (0) (2.22) 
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Becausefs(0) andfF(0) for the nuclear amplitude are defined only in partial-wave form, 
we remind the reader that they can only be obtained from the phase shifts. No way is as yet 
known for decomposing angular distributions in N/F form without going through a partial- 
wave analysis. 

3. A FEW ESSENTIAL PROPERTIES OF HEAVY-ION ANGULAR 
DISTRIBUTIONS 

The essential features which characterize heavy-ion optics at high energy are: 
1. L ~- kR  >> 1 (many partial waves); E > [V]. 
2. Strong Absorption and Weak Refraction 
3. Edge scattering or peripheral g-window: R >> a, ka > 1. 

That is, from an optician's viewpoint, what we are considering here is short wavelength 
edge-scattering (diffraction) by a strong absorber. All angles beyond _ 01/4 are classically 
forbidden, and in 3 dimensions all angular distributions fall off exponentially in angle. Put 
another way, even in the case of scattering by a purely real potential, all angular distri- 
butions "shrink toward forward angles" as kR  increases. In particular, rainbow angles 
decrease like 1/E, so at sufficiently high energies, all angles will be "beyond the rainbow", 
and again one can expect angular distributions which fall exponentially over wide angular 
ranges. 

Such angular distributions depend on a few relatively simple optical phenomena: Diffrac- 
tion (absorptive shadows, edge diffraction), Refraction (orbiting, Coulomb-prism effect) and 
Interference. Before attempting to analyze observed angular distributions (which involve all 
these phenomena simultaneously) in detail in Section 4, we devote the present section to a 
catalog of these effects separately. 

3.1. Exponential shadow tails from peripheral f-windows 

Equations (2.8) and (3.10) show that (aside from the sin-1/20 phase-space factor) fF (0 ) 
can be written as the Fourier-transform of the S-matrix elements S(f), 

fF(0) ~" Jl  ~ [1 -S ( f ) ]  ei t°d( .  (3.1) 

Consider the limit of pure absorption, customarily defined by the requirement that S(Y) be 
real, or 6(Y) be pure imaginary. As an example, first, of non-exponential  shadows, we recall 
the case of proton-proton scattering in the few GeV range, for which [1 - S(Y)] is nearly real 
and is successfully approximated by a Gaussian function of Y, 1-S(Y) ~_ exp (-y2/4L2), 
giving 

fF(0) ~ e -L202 --~ e -q2R2 (3.2a) 

at small angles, which does not carry a phase factor of the form exp (iLO), because this 
integral does not come from the surface region, i.e., is not an edge-wave, fy(0) thus differs 
fromfv (0) only by a constant (i.e., 0-independent) phase factor, so their sum also gives 

f (O) ~_ e-q2g2, (3.2b) 

the familiar empirical Gaussian dependence. Physically this parametrization says that a 
proton is "all surface", i.e., its "edge" is so soft that it extends to the center of the proton, and 
the scattering is not edge-dominated at all. Indeed, doing the integral by steepest descents 



126 M.S. Hussein and K. W. McVoy 

yields :o = :o(O) = 2 i ~ 0 ,  i.e., the :-value at which the running wave runs is not only 
imaginary but increases with O, giving the Gaussian angular falloff: the shadow-falloff for a 
thick-skinned absorber is fa s t e r  than exponential. 

At the opposite extreme, we know that a sharp-cutoff :-distribution, S ( : )  = O, : < L = 
kR ,  S ( : )  = 1, : > L,  gives the familiar black-disc angular distribution, 

R 
f(O) = iRJ l ( kRO) /O  ~_ - [-a-i(LO-n/a)--~i(LO-n/4)-I LO > 1. (3.3) 

(2k sin 0) 1/2 L~ - J, 

Since L = k R  is real, sin OIfF(O)I ~ is constant: taking the skin thickness of the absorber to 
zero makes the shadow-falloff distance infinite (i.e., uniform illumination of shadows). 

Finally, recalling that the Fourier-transform of an exponential is a pole, it is clear that if 
we wish exponential shadows, we must start from an S ( : )  which has poles (at complex :). 
The most familiar such parametrization is the Fermi-function shape employed by Frahn, (1) 
Rowley and Marty (6) and others, t9) 

1 
1 - S ( : )  = 1 + exp [ ( : -  L)/A] ' (3.4) 

which has poles at : = L+_innA.  Doing the integral in (3.1) by contours, the argu- 
ments employed in connection with (1.7) yield, in the A << L limit, 

fF,N(0) ~ e +i(L+inA)O = e-~a°e -+iz°, 0 > 0, (3.5) 

which indeed has an exponential shadow tail [and reduces, in the A ~ 0 limit, to (3.3)]. As 
pointed out in connection with eqn. (1.8), this is really just an exponential 1-slit diffraction 
pattern, whose envelope at both positive and negative angles is exp (-nAI0[). 

Thus our conclusion is that exponential shadows are cast by spherical absorbers whose 
surface thickness is small compared to their radius, but not zero. Note, incidentally, that for 
absorbers the shadows "begin" at 0 = 0: the entire (forward-peaked) angular distribution 
(i.e., diffraction pattern) is classically forbidden. 

3.2. Babinet symmetry for pure absorbers 

The pure-absorber limit, Im[S(:)] = 0, is an important one for heavy ions, whose optical 
potentials are strongly absorptive. As an approximation to it (not exact because even an 
imaginary potential reflects), Fig. 10a shows the angular distribution for a purely imaginary 
potential ,  with neither nuclear nor Coulomb refraction. Its obvious feature is that a N (0) and 
aF(O ) are essentially identical. This is in fact a theorem, which follows immediately from 
(2.18) and (2.21), if S(:) is real for real : :  

T h e o r e m  

so that 

S( : )*  = S(¢) =~ fF  (0) = --fr~ (0), (3,6) 

as(0)  --- aF(0), (3.7) 

and in general the N/F interference minima are zeros, as in the black-disc example. 
The theorem also has a useful corollary: If :N(0) is the (complex) solution of the trajectory 

equation (2.13a) for a pure absorber, the corresponding Far-side solution for the same angle 
is its complex conjugate, :Fo (O ) = :No * (O ). 

This follows directly from the assumption that 6(:) is an analytic function, and is pure 
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Fig. 10a. Scattering by a purely imaginary potential, with neither nuclear nor Coulomb refraction. 
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imaginary at real : for a pure absorber. If 25'(:o N) = 0 = real, this implies that 
- 26'*(Yo N*) = 0, but this is just (2.13b), q.e.d. 

3.3. The single-slit edge wave of an absorber 

Figure 10a shows only the 0 > 0 parts of the above diffraction pattern, but the properties 

- f~ (O)  = fv (0) = fN (-- 0), (3.8) 

valid for a pure absorber, show that a N (0) and a v (0) are actually symmetric about 0 = 0, as 
Fig. 10b illustrates. We call this a Babinet symmetry because it is a simple example of the 
Babinet principle for the diffraction patterns of absorbers. That  is, considering one limb of 
the absorber alone,* Babinet guarantees that the scattered (diffracted) wave generated by a 
beam intercepted by the absorber is the same whether the absorber is to the right or left of 
the edge position, i.e., its diffraction pattern must be symmetric about 0 = 0. 

The symmetry theorem (3.7) is true for any pure absorber, but it takes on very concrete 
physical meaning for an edge-wave diffraction pattern. Consider doing the g-integral of 
(3.1), 

fv(O) ~-- I °~ [-1 - S ( : ) ]  e ice dr, 
Jo 

* Which we are free to do if R >> a. 
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Fig. 10b. Schematic indication of the N and F single-slit diffraction patterns, which are identical for a pure 
absorber. 

by steepest descents. For  an edge-scatterer, in which 1 - S ( d )  is nearly constant throughout 
the internal region, any internal d can only contribute to straight-ahead (0 = 0) propagation 
(a plane-parallel slab of glass produces no deflection). Hence the only d-region which can 
produce deflected rays is the peripheral or surface region, where S(d) does change with d and 
so can counteract the oscillations of the exponential factor. This is the reason such a 
scatterer generates its deflected rays primarily from its edge region (d-window), with an 
expanding scattered-wave packet emerging from each "slit", as illustrated in Fig. la. If the 
scatterer is a pure absorber ( [ 1 -  S(f)]real), the symmetry theorem (3.7) guarantees that 
these identical peripheral diffraction-fans will each be symmetric about 0 = 0; their exact 
angular shape will depend on S(d), but this symmetry is guaranteed for any surface-shape of 
S(d). 

Incidentally, eqn. (3.1) provides a simple explanation of the fact that the scattering 
amplitude of a spherical absorber is edge-dominated, while that of a spherical refractor is 
not. The point is simply t h a t f ( f )  = [ 1 - S ( f ) J  "saturates" a t f  = 1 for f < L in the strong 
absorption case, and so contributes nothing to deflected rays (0 :/: 0) from its internal, 
f < L, region. For  a spherical refractor, however, which is simply a spherical "lens", the 
phase shift (proportional to the chord distance [R E - b2] 1/2 at impact parameter b = f/k, in 
Glauber approximation) has a shape like that of Fig. 8. It varies with d everywhere except at 
the very center, so all parts of its interior contribute deflected rays, i.e., its amplitude is not 
edge-dominated.* 

3.4. Slopes of exponential shadows: Orbiting at complex d 

The above arguments indicate that a thin-skinned absorber will produce identical 
exponential diffraction patterns for aN(O ) and try(0), both symmetric about 0 = 0. What 
happens if nuclear refraction is added ? Figure 11 shows the cross-sections for the absorber 

* For further details on lenses viewed as phase-shifters, see Appendix A. 
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Fig. 11. Repeat of Fig. 9, with nuclear refraction (V= W= 42MeV) added, thus increasing N-slope and 
decreasing F-slope. 

of Fig. 10a (W = 42 MeV), but with an equal amount of refraction (V = 42 MeV) added, 
with the same geometry (and no Coulomb potential). The result is to enhance the far side 
over the near side (as is certainly to be expected, for an attractive potential), by changing 
their slopes• The fact that the effect of V is simply to change the slopes can be implied 
immediately from the fact that, in the absence of the Coulomb potential, the system is 
entirely symmetric in N and F at 0 = 0, so that, whatever potential is present, we must have 
aN(0 ) = trF(0).* That is, adding V can do nothing but "pivot" the aN(0 ) and O'F(0 ) lines 
about  the same 0 = 0 point. 

To avoid misinterpretation, we emphasize that this is a change in the symmetry of each 
single-slit diffraction pattern, not a shift in its central direction (such a shift is accomplished 
by the Coulomb field); the maximum of each single-slit pattern is still at 0 = 0, as indicated 
schematically in Fig. 12. Optically speaking, this alteration of the symmetry of a diffraction 
pattern has been accomplished by adding refractive material internally, within a diffraction 
slit (as opposed to the use of an external focussing lens), in a situation where the width of the 
slit is comparable  to the wavelength of the radiation. It  is consequently quite esoteric from 
the optics point of view, and we know of no simple optical analog. 

The full details of the way in which V and W affect the N and F shadow slopes is quite 
complex and will be published elsewhere. We give here only a brief summary  of the results. 

* Actually Q~+)(cos 0) are logarithmically singular at 0 = 0, but the singularity is so mild that it has no visible 
effect beyond 1 °. 



130 M.S. Hussein and K. W. McVoy 

Fig. 12. Repeat of Fig. 10, with nuclear refraction added. Note  asymmetry of the single-slit patterns. The "right- 
hand half" of each pattern is shown in Fig. 11. 

The near-side amplitude can be thought of as arising from reflections off the front of the 
potential, at distances of closest approach, ro, which in general change with a 0 (or impact 
parameter b) and are determined by the trajectory equation (2.13a). At energies below the 
Coulomb barrier, ro(O ) will be in the "external" region, and will have its minimum value at 

= b = 0 as indicated in Fig. 13, where 0 = ~; i.e., for E < E B all angles are classically 
allowed. Since E = 0, this important value of ro is determined by the condition 

V[ro(n)] = E, (3.9) 

where V(r) includes both the nuclear and Coulomb potentials. If V(r) is real and E < En, 

t50 

I00 - 
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-50~ 

o 
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5 tO r o 15 20 
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Fig. 13. A typical Vt(r), for 3 E-values. EB is the Coulomb barrier energy, and Ee is the "Fill-in" energy, at which 
the potential pocket disappears with increasing ~'; it occurs in this case at t = 27. 
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ro(rc ) will be real. It is complex if E > EB, or at every energy if the nuclear potential is 
complex. Its importance derives from the fact that ro(O ) has a minimum at 0 = re, 

dr o _ dd 
- 0  at 0 = n .  (3.10) 

dO dO 

The importance of this, in turn, is that fN(O)'~ ex p [ - i d o (0 ) ]  will in general not be 
exponential in 0 if go(O) = kron(ro) is changing with 0. Equation (3.10) guarantees that it 
does not change with 0 at large angles, which are deep within the Coulomb-shadow region at 
high energy. (The Coulomb-rainbow angle decreases below n as E increases through E B and 
continues decreasing like 1/E.) In fact, the classic work of Knoll and Schaeffer iS) indicates 
that go(O) moves very slowly with 0 for most angles beyond the Coulomb rainbow angle, 
which is close to the quarter-point angle. This implies that, once da/da R begins to drop 
below unity, the descent of dtr/d0 is nearly exponential, with a slope determined by the r o 
obtained from (3.9). This slope is given by 

2Img 0 = 2Im(kbo) = 2kIm[ron(ro)], (3.10) 

where 

n(ro) = [1 - V(ro)/E ] 1/2. (3.11) 

If we neglect the Coulomb potential, and assume a W - S  nuclear potential, this gives the 
simple result* for the near side, 

ImroN(n) = a{n - t an - I [W/ (V+Ecm) ]}  (W > O, V > O) 
(near side, equal geometry) (3.12) 

showing that, as a function of W, the slope of the near-side shadow is a maximum when 
W = 0: increasing W actually makes aN(0 ) decay less steeply, as Knoll and Schaeffer also 
noted. Increasing E (or V), on the other hand, steepens the near-side slope by increasing 
IIm(ro)l toward its maximum value of ha. This is the nearest pole of the Woods-Saxon pole 
in the lower ro-plane, to which ro is clearly expected to tend as E ~ 0% according to (3.9). 

What about the slope of the far side? Again we must seek an r o at which dro/dO = 0, and 
this time it is given by the "orbiting" condition that the radial kinetic energy vanish exactly 
where V(ro)+ h292/2#r 2 has a maximum, as is also indicated in Fig. 13. That is, do = do(0), 
so as 0 changes, go changes, and when d o satisfies 

h2¢  
V(ro) + = e ,  (3.13a) 

(orbiting) 
where 

V(r) + 2#r2 ] = 0, (3.13b) 

this defines the do - f8  = fB(E) for which E is tangent to the top of the barr ier--as shown 
for d = 14 in Fig. 13. This is precisely the "orbiting" condition, and (for this E), En is the g- 
value at which the WKB deflection function 0(g) has a logarithmic singularity, 0(g)-~ 
In(g-riB). Hence d 0 / d g ~  and d O / d r o ~  at ( = g  n, or equivalently d g / d 0 =  
dro/dO = 0 at g = gB: the (far side) g(O) moves very slowly as a function of 0 when it is close 

* Neglecting the Coulomb potential of course loses the Coulomb-rainbow-phenomenon: there are no classically- 
allowed positive angles in this case, even if W = 0. 

PPI~-E* 
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to d B - w h i c h  is exactly the condition necessary to give exp (idO) an exponential dependence 
on 0. This can only happen, at real r o, if V(r) is real and E < E F (Fig. 13), where E F is the 
energy* at which the potential Vt(r) loses its pocket with increasing d. r o becomes complex 
(a) if E > E F when W = 0, or (b) at any energy, if W ~  0, but it is still determined by the 
orbiting conditions (3.13). 

Again neglecting the Coulomb potential, assuming a W-S nuclear potential, and 
neglecting terms of order a/R, Imr o is found to be given by 

cos2[Im(rFo/2a)] = ½(1 +7)--½[(1 +7)  2 --4 7 COS2t~/2"] 1/2, 
where 

1 (V 2 --[- W2) 112 R 

Y = 8 E~,, a ' 

q~ = t an-  I (W/V) ,  (Far side, equal geometry) (3.14) 

and this root of the quadratic must be used when W ¢ 0. The E ~ oe limit gives 
cos [ImrFo/a)] = 0, implying Imr F = + rca, again because rFo ~ R + izta, the first upper-plane 
pole of the W-S potential, as demanded by (3.11). Also, increasing V decreases Imro F (though 
not obviously), thus decreasin9 the slope of the Far side, opposite to the effect of V on the 
Near side. 

We remark in passing that adding any attractive real potential to a pure absorber will 
make the N-slope steeper than the F-slope. The effect is not due to the fact that the Coulomb 
rainbow is "wider in d" than the nuclear rainbow, as often conjectured. As Fig. 11 indicates, 
it occurs when there is no Coulomb rainbow at all. 

In summary, the qualitative effect of adding an attractive refractor to the peripheral d- 
windows of an absorber is to pull the N-diffraction pattern toward the forward direction 
(0 = 0) and the F-pattern further away from 0 = 0 (attractive forces aid Far-side diffraction), 
in agreement with one's intuition. The remarkable aspect of the example shown in Fig. 11 is 
that it is accomplished by leaving both aN(0 ) and aV(0) as exponential curves, merely 
changing their slopes appropriately. This is, in fact, a result of the use of equal geometries for 
the real and imaginary parts of the potential; a close examination of aN(0) for the E 18 
potential of Fig. 6 shows it to have two slopes, in different angular regions. They are related 
to the different values of a for V(r) and W(r), as we explain below. 

3.5 .  E x t e r n a l  re f rac tors :  T h e  C o u l o m b  pr i sm 

The final topic in this section is the effect of the Coulomb force on the single-slit 
diffraction patterns of the nuclear absorber, which is very different from the effect of the 
nuclear refraction. The reason is simply that the Coulomb field is a very "soft" refractor, i.e., 
its phase shift a(d) has no singularities near d ~_ kR. With a Coulomb field present, the total 
phase shift is, as usual, fi(d)+a(d), with 6(d) the "nuclear" phase shift calculated by an 
optical code. The trajectory equation is then 

d 
-T- 0F,N = 2 ~  If(d) + a(d)] = 26'(do) + 0c(do), (3.15) 

where 0c(d) is the Coulomb deflection angle at the (generally complex) d = d o. However, 

* It is also the energy at which the nuclear rainbow angle becomes less negative than - n, and is given roughly 
by (5) E F = aV~oul(R ) + (a/8R)V. 
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because, as we have seen, fo - k ( R  +_ ifla), with fl < 7t, {o differs from k R  by less than z~ka. 
This is typically less than 10 units in f ,  and since 0c(f ) changes little over this range, at high 
energies, we may approximate it by its value at f _~ kR,  which in the high-energy limit is 

Oc(kR ) 2 tan-  l ( r l /kR ) 2rl /kR V~(R) = - = 01/4, (3.16) 
Eon 

the high-energy approximation to the customary quarter-point angle.* 
Approximating 0c({) as constant across the f-window is optically equivalent to approxi- 

mating the curved Coulomb "lens" by a fiat "prism" in this f-range, and gives the trajectory 
equations 

0F+01/4  = 26'(fF), 0N--01/4 = 25'({N), (3.17) 

which are of exactly the same form as the original equations, except for a constant shift by 
0x/4. Thus if 

f ~ (O)  ~- e-#Nka° e -ikR°, f~.(O) ~_ e-#vkaO e+ikRO (3.18) 

without the Coulomb potential, they become 
f N  (0) ~-- e - flNka(O - 0,/4) e - ikR(O - O,m), 

fF(0) ~ e -#Fka(O+O~l') e ikg(O+O~/') (3.19) 

with the Coulomb potential, fin and flF can be estimated from eqns. (3.12) and (3.14) as 

fiN = Im(rNo /a), flF = Im(rFo/a) • (3.20) 

Unlike the "internal" nuclear refractor, which is singular, the "Coulomb prism" does not 
change the slopes of a N (0) and a F (0), but merely shifts them in angle, to the right (larger 0) 
for aN and to the left (smaller positive 0) for tr F, exactly as seen in Fig. 3c, and in accord with 
one's intuition (aN(0) shifted away from 0 = 0, trv(0 ) shifted toward 0 = 0 by a diverging 
lens.) 

Actually, shifting a straight line (like aN,F(0) on a logarithmic plot) horizontally is 
equivalent to shifting it vertically, and (3.19) can also be interpreted as a vertical shift, 

In trN = 2(fin +flF)ka01/4. (3.21) 
(7 F 

This is in fact a preferable interpretation, for, although the maximum in the trF(0 ) single-slit 
diffraction pattern can correctly be thought of as being shifted "out of sight" at negative 
angles, aN(0 ) has the 0-2 Coulomb divergence at 0 = 0 which keeps its "maximum" fixed at 

1 aN(0 ) is dominated by the point-Coulomb amplitude and cannot be 0 = 0. For 0 ~ 30,/4, 
given this "shift" interpretation, but for larger angles, (3.19) accurately reflects the effect of 
the Coulomb potential. 

Figure 14 attempts to represent this schematically. The figure at the right shows aN (0) 
and aF(0) for a pure absorber plus Coulomb:  a N is shifted up relative to trv by the factor 
represented by eqn. (3.19), but they remain parallel--i.e., the single-slit pattern is left 
symmetric by the Coulomb shift. Adding nuclear refraction makes the single-slit pattern 
asymmetric by making the slope of a N (0) greater and that of a F (0) less, thus producing a 
Fraunhofer cross over, as shown in the center part of Fig. 14. 

* This value of 0am has been included in the figure legends for convenience, as well as the nuclear rainbow angle 
and (kal). A more accurate estimate would replace k by kn(R). 
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Fig. 14. Schematic representation of tr N(0) and tr ~(0). The right-hand figure shows symmetric but shifted single-slit 
or "grazing-peak" patterns which occur (as in Fig. 3c) if V = 0. The center figure indicates how the addition of V 
makes the single-slit patterns asymmetric by increasing the slope of tr N and decreasing that of tr F (i.e., each N or F 

combination "pivots" about the crossing-point at 0 = 0), thus producing the Fraunhofer crossover. 

4. PRACTICAL APPLICATIONS AND EXAMPLES 

4.1. Summary of Sections 2 and 3 

The pieces of the puzzle are at last all in hand. To summarize the results of the previous 
two sections, the scattering amplitude for a typical (strongly absorbing) heavy-ion optical 
potential can be written as a sum of two single-slit (peripheral f-window) diffraction 
patterns, as suggested by Fig. 14. The angles of the centers of these patterns are "flared out" 
by the diverging-lens effect of the Coulomb field, and each pattern is exponential about its 
center, but made asymmetric (in the manner indicated by Fig. 12), by the nuclear refraction. 
The parts of these single-slit patterns seen at positive angles are the Near-side and Far-side 
amplitude, and the Near side is the steeper of the two. At low energies (roughly E < IVI) the 
Near side, enhanced by Coulomb repulsion, dominates over the Far, and dtr/df~ shows no 
Fraunhofer diffraction oscillations, i.e., no N/F interference. For E > IVl, the Near side is 
still dominant at small angles (large impact parameters), but at larger angles the trajectories 
penetrate the nucleus and the smaller slope of tr F (0) (caused by nuclear refraction) causes it 
to cross through a N (0), producing a localized range of N/F Fraunhofer oscillations, beyond 
which it is dominated by the "structureless falloff" of the exponential decay of tr F (0). In the 
equal-geometry case, fN (0) andfF (0) are well approximated by the very simple expressions 
ofeqns. (3.19)and (3.20). 
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Put in simplest terms, the Near side and Far side cross-sections aN(0 ) and aF(0 ) describe, 
for a strong absorber, the "outside" and "inside" edges of the peripheral single-slit diffraction 
pattern. Both are nearly straight lines on a logarithmic plot, with relative slopes (steeper for 
N) determined by the real part of the nuclear potential, and relative normalization deter- 
mined by the Coulomb potential. If E > I Vt > Ebarrie r they cross at some finite angle, 
producing localized Fraunhofer oscillations of peak-to-peak period A0 = z~/L. 

Incidentally, three other types of interference patterns are also sometimes observed (see 
examples below): 

1. Near-Near Interference. These are the familiar forward-angle oscillations (best seen in 
dtr/dtr R for 0 < 01/4), describable as either Fresnel diffraction (if absorption is strong) or the 
"Airy maxima" of the bright side of the Coulomb rainbow (if absorption is weak). 

2. Far-Far  Interference. The "Airy maxima" of the bright side of the nuclear rainbow. 
3. N/F Interference Near 180 °. By symmetry, scattering at 0 = 180 ° must equal that at 

0 = -180 °, meaning aN(0 ) and trF(O ) must be equal at back angles. Depending on their 
slopes there, they may produce a sequence of oscillations known as the (backward) glory 
effect. 

With this background in hand, we turn to an analysis of interesting examples from recent 
heavy-ion experiments. 

4.2. Influence of nuclear refraction 

Figure 15c shows the N / F  decomposition for an optical potential which fits recent 9 B e  

and 160 data of Fulmer et al. <17~ The radius of its imaginary part is larger (by about 2a) than 
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that of its real potential, but the real potential is 6 times deeper (184/31) than the imaginary 
one, producing a localized N/F crossover around 12 °. Figure 15a shows how the angular 
distribution is changed by removing V altogether: it of course becomes Near-dominated, 
aN(0) and aF(0 ) are parallel, and there are only very weak Fraunhofer oscillations. 
Increasing V to 100 MeV (about half that needed to fit the data) with the original geometry 
(Fig. 15b) causes a F (0) to "pivot" about its 0 = 0 value (which is very nearly independent of 
V), decreasing its slope as predicted above.* The slope of a~ (0) increases (though not by 
nearly as much), producing a "slow" crossover whose oscillations extend from 10 ° to 40 °. 
Finally, increasing V to 400 MeV (Fig. 15d) causes a N (0) and a v (0) to pivot farther still, but 
also brings in a new refractive phenomenon--the nuclear rainbow (the rainbow angle is 
-209  ° in this case). This very strong refraction is able to channel waves through the center 
of the nucleus, and the far side is, in this case, not edge-dominated. Rather, low-: contri- 
butions tofv(O ) become strong enough to interfere with the edge wave, producing the very 
broad ( -  40 °) Far-side oscillations--i.e., the Far-Far interference of the nuclear rainbow, 
which we examine more closely in the next Section. This evolution of the Fraunhofer pattern 
with increasing V is recapitulated in Fig. 15e. 

In summary, these examples show how the difference between the N and F slopes is 
increased by increasing the depth of the real potential, thus causing the number of 
oscillations in the Fraunhofer crossover to decrease. 

4.3. Nuclear rainbows? 

There has been considerable discussion recently ~1a-2°) of the possibility that elastic 
12C+ 12C scattering at E L > 300MeV may show evidence for a nuclear rainbow. The 
practical importance of such an occurrence is perhaps best seen in the context of the familiar 
"Vo a2 ambiguity" of the real part of the optical potential. Some years back, elastic data was 
available, for such projectiles as £s, only in the angular region forward of the Fraunhofer 
crossover (as is presently the case for heavy-ion projectiles on heavy targets), and it was 
noted that, in this N-dominated region, equally good fits could be obtained for a variety of 
different potentials if V o and a 2 were varied inversely. Something like this is surely true if one 
recalls from the estimates given in eqns. (3.10)-(3.14) (which really only apply for equal- 
geometry potentials, but indicate trends in general) that the slope of a N (0) can be increased 
by increasing either V o or a. Of course, these changes have opposite effects on the slope of 
¢rF(0 ), so such potentials are "ambiguous" only if the Far-side component, visible beyond 
the crossover, is not experimentally available. Goldberg et al321) pointed out this large-angle 
sensitivity to Vo in the context of the nuclear rainbow, noting that, if the absorption is 
sufficiently small, it is reasonable to associate the falloff in da/df~ (really in av (0)) with the 
"tail" or dark side of the nuclear rainbow. 

Figure 16a shows the cross-sections for three heavy ion combinations which are con- 
ceivable candidates for such a description: 9Be + 1 6 0  (E L = 158 MeV), "7) 6Li + 28Si (E L = 
135 MeV) t22) and ~2C + ~2C (E L = 300 MeV). O9) Note that we have not symmetrized the 
C + C amplitude about 90 °, in order to facilitate the comparison; this has no significant 
effect for 0 < 70 °, where the data stop. Without seeing the Far-side cross-sections, there is 
little hope of knowing how to interpret these data in the 0 > 20 ° region, beyond the 
crossover. The Far-side cross-sections are given in Fig. 16b and, unfortunately, show almost 

* We note that the effect is very similar to that of increasing the energy, as was shown in Fig. 5. 
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Fig. 16a. da/dO for three recently-measured angular distributions. 
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no indication at all of the "Airy minima" one would expect on the bright side of the nuclear 
"rainbow angle" [which we estimate as -~ 90-100 ° from the simple-minded approximation 
0(8) ~_ 2Re (db/d:)]. As a means of understanding this a bit better, Fig. 17b shows the cross- 
section given by one of the potentials obtained by Brandan (is) for the 288.6 MeV data of 
Cole et  al. (2°) for t2C+  12C, and Figs. 17a and 17c show how it changes if either its real 
or its imaginary part is removed. Removing V of course steepens aF(0 ) so much that the 
crossover is removed altogether, while removing W makes the entire cross-section Far-side 
dominated, and shows a spectacular nuclear rainbow, with a nuclear rainbow angle around 
- 64o. * Its bright side oscillations are due, as usual, to the interference of two :-values which 
send flux into the same (negative-angle) direction. Since they are closer together in { 
("shorter baseline") than the diametrically-opposed limb-points responsible for N/F inter- 
ference, their maxima are spaced farther apart in angle, in accord with the peak-to-peak 
angular separation formula 

2Ir 
AO = ~. (4.1) 

Figure 17d compares these three cross sections on the same graph. 

* We note the interesting confirmation of the prediction of eqn. (3.11) that reducing W increases the slope of 
aN(O). It is this which "exposes" the rainbow oscillation in av(O), which would otherwise remain hidden beneath 
aN(O). 
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Fig. 18b. Same as Fig. 17b, but  with the radius of W(r) reduced by a factor of 4. Note the nuclear rainbow 
beginning to emerge as its inner-f  contribution is "freed" from absorption. 

Figure 18 provides further information by exploring the effect of changing the radius of 
the imaginary potential. Doubling R w essentially removes the effect of V altogether, making 
the cross section N-dominant (Coulomb effect), with aN (0) and o F (0) parallel. Reducing R w 
to R J4 ,  on the other hand, "frees" the inner E of the nascent rainbow, which was previously 
suppressed by absorption, thus permitting a bit of the Airy pattern to develop; note that it 
begins with the largest-angle minimum, whose "inner f "  is nearest the surface and so the first 
to be "freed" as R w decreases. Finally, reducing R w to zero (Fig. 17c) frees more of the inner 
Cs, permitting more of the bright-side pattern to emerge. 

Can the original curve, Fig. 17b, be appropriately labelled evidence for a nuclear 
rainbow? That depends entirely on what one understands by a rainbow. If one requires the 
full Airy-type pattern, with bright-side "supernumerary bows", then clearly this is not a 
rainbow. Various experimental groups (1s'19'22) have adopted the "rainbow" terminology 
for any "structureless falloff" at angles beyond the Fraunhofer crossover, intuitively sensing, 
perhaps, that the difference in slope before and after the crossover is an indication of 
different amplitudes. In the present context, it seems to us that it is the crossover itself which 
is most significant, not the exact shape of aF(0) beyond the crossover. It is the crossover 
which signals the influence of the nuclear refraction, by measuring the F-slope against the 
N-slope. From what we have seen of amplitudes for any projectiles heavier than a-particles, 
it seems likely that they will experience sufficient absorption to make their Far-sides 
"structureless" at all angles, "bright" or "dark". The term rainbow seems to us rather 
inappropriate in this case; "Far-side shadow", "Far-side falloff" or some such noncommittal 
term would appear preferable. 
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Fig. 19. 160 +2aSi. Modification of a potential employed by Dehnhard et al., Ref. 23. Note the "hidden rainbow" 
in tr F(0), no t  visible in the  cross-sect ion itself. 

4.4. A hidden rainbow 

The Fig. 7 referred to in Section 1.5 is the best example we have yet seen of what appears 
to be a true nuclear rainbow, in the sense that the broad minimum around 90 ° is a purely 
Far-side phenomenon for which we see no other explanation than F a r - F a r  interference. 
The next-best case we know of is the "Near miss" of Fig. 19. This comes from a highly 
refractive "equal geometry" potential ( V _  5W) employed by Dehnhardt  (2a) to fit the 
55 MeV scattering of 160 on 2ssi. He employed a "parity-dependent" term ( - 1 )  e in the 
partial-wave expansion, which enhanced the back angles to fit the data. Since this primarily 
"lifted" the back-angle cross-section ("anomalous large-angle scattering") without changing 
its oscillatory pattern, we have left it out for simplicity. The resulting Far-side amplitude 
shows a clear rainbow dip at 45 ° - w h i c h  unfortunately is invisible in the full cross-section, 
because of the total N-dominance in this region. It is interesting that in this particular case, 
at least, the oscillations in the backward hemisphere arise from the interference of the Near- 
side amplitude with the r a i nbow  tai l  of the Far side. 

4.5. The Case of the transparent surface 

The "El8"  potential of Cramer et  al. (24) for 160 + 288i scattering has acquired a certain 
notoriety as a classic example of an "absorptive" potential. It may consequently come as 
something of a surprise that it has distinctly "refractive" characteristics at forward angles. Its 
W S  parameters, as shown in Fig. 6 and repeated in Fig. 20a, are (in MeV and Fm) V = 10, 
R = 7.5, a = 0.618, W = 23.4, R 1 = 6.83 and a I = 0.552. Since R > R I (by about 2a), it is 
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Fig. 20a. 160 + 2aSi. Repeat of Fig. 6, for the diffractive potential, E18, of Cramer et  al., Ref. 11. 
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technically a surface-transparent potential, but V ~- I41/2, so actually W(r) is deeper than 
V(r) in the critical range between R and R/; V(r) is deeper than W(r) for r > R. 

The remarkable property of its forward-hemisphere angular distribution is the long 
sequence of N/F interference oscillations extending from 20 ° to 80 °, together with the 
absence of such oscillations forward of 20 °. This is accomplished by making a N (0) and tr F (0) 
parallel and equal over the 20-80 ° range (no crossover !), together with a "kink" in aN(0), 
whose steep slope for 0 < 30 ° is reduced at that point to the lower value necessary to keep it 
"tangent" to tr F (0) for the larger angles. 

This is an example of the type of subtle interplay of refraction and absorption which is 
distinctly beyond the reach of any of the simple S(E)-parametrizations so far (a) proposed. It 
should also be remembered, however, that the experimental data (24) only extend out to 
about 30 ° , just where the interesting region starts; it would clearly be of considerable 
interest to know what happens beyond that, especially in connection with the other 
potentials discussed in the following section. 

The ingenious device the computer-search found for achieving this angular distribution is 
a "black ball enclosed in a glass casing", i.e., an inner absorber, with a refractive (though 
weak) real potential extending beyond it as shown in Fig. 21. An examination of dtr/da R 
shows that the angles forward of 5 ° are pure point-Coulomb scattering, but the 5 ° < 0 < 20 ° 
range is distinctly a Coulomb-rainbow tail in this case, i.e., these impact parameters are large 
enough that the scattering is reflection (Near-side) from the glass shell only. It is only for 
0 > 30 ° that the Near-side trajectories penetrate deeply enough to encounter the strong 
inner absorption--and thereafter aN(0 ) = aF(0 ) in exactly the manner of a pure absorber: 
in this region, the external nuclear refraction has exactly cancelled the "angular shift" of the 
Coulomb field. 

This can be seen very directly in Fig. 20b. Removing V removes the 30 ° N-side kink (by 
decreasing the N-side slope, as usual), giving a pure-absorber-plus-Coulomb aN (0) all the 
way forward to the pure Coulomb range, 0 < 5°; it is parallel to the El8 aN(0 ) for 0 > 30 °, 
showing that the external nuclear refraction merely shifted that exponential decay, rather 
than changing its slope. Removing the Coulomb potential, on the other hand, shifts a N (0) 
the other way, to smaller angles; in the range 0 > 30 °, the two shifts are seen to be essentially 
equal and opposite. 

E 18 Potential 

from V 

Fig. 21. Schematic representation of the E l8  potential, with inner absorption and outer refraction. For  5 ° < 
0 < 30 °, aN(0) results from reflection from V(r), while for 0 > 30 ° it comes from reflection from W(r). 
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The 5 ° < 0 < 30 ° range, on the other hand, is shown by Fig. 20c to be due to the external 
refractor alone. As a test, one of the curves in Fig. 20c results from decreasing a I Jay a factor 
of 2; this is seen to decrease the slope of a N (0) in the "absorptive region" by just a factor of 2, 
while leaving the slope in the forward-angle "refractive region" unchanged. Alternatively, 
decreasing V I by a factor of 5 also leaves the 0 < 30 ° slope unchanged--though it does 
introduce oscillations at larger angles due to a contribution from waves which have entirely 
circumnavigated the target, and so interfere with the "direct" reflection; these are normally 
suppressed by the larger V I. 

As a final comment on this system, Fig. 20d shows the cross-sections which result if the 
original El8 potential is changed by simply reducing R from 7.5 to 6.83 Fm, to make it equal 
to R I. This provides another verification that the "kink" in aN(0), together with is steeper 
slope for 0 < 30 °, were produced by that portion of V(r) which extended outside W(r), for 
removing this portion by reducing R to equal R I removes both the kink and the steep 
forward slope of aN(O) altogether. 

In summary, the way in which this "surface-transparent" E18 potential functions optically 
to produce the 2-slope aN(0) of Fig. 20a is indicated in Fig. 21. For 5 ° < 0 < 30 °, the impact 
parameters are small enough to produce reflection from the external portion of V(r), but too 
large to "see" the internal absorber. For larger angles the rays do penetrate far enough to 
reflect from the absorber (thus decreasing the N-slope), but the external nuclear refraction 
re-directs them in such a way that the "external" scattering angle, observed asymptotically, 
is smaller than the "internal" angle of reflection from the surface of the absorber. The effect of 
the external attractive nuclear potential is thus to pull the Near angular distribution aN (0) 
forward (relative to Fig. 20d) in all cases; at small angles it does so by steepenino its slope (in 
accord with eqn. (3.12)) and at larger angles it does so by shiftino the "pure-absorber" ~r N (0) 
forward, without change in slope, in the manner of an external prism. 

4.6. Potential ambiguities 

It is particularly interesting to examine the N/F analysis of different amplitudes which 
provide equally good fits to a given experimental angular distribution. The 160 + 2sSi 
system is a case in point, since Satchler <25J has shown that potentials can be found which are 
of a very different type from the E18 potential just discussed, yet fit the data equally well. 

DeVries et al. ~22) have drawn a distinction between "refractive" and "diffractive" optical 
potentials. A "refractive" potential in their classification is a W-S potential with V > 4W 
(but R e < Rw); operationally, it is one which produces a prominent Fraunhofer crossover 
("nuclear rainbow", in their terminology), as is seen for projectiles lighter than, say, 160. A 
"diffractive" potential, in their terms, has V < W and engenders no crossover, at least in the 
angular range investigated. 

Their E18 potential is the classic example of a "diffractive" potential, and has the merit of 
fitting the 16Oq-28Si elastic data over the bombarding energy range from 38MeV to 
215 MeV; the data extend out to 100 ° at 38 MeV and to 30 ° at 215 MeV. As we have seen 
above, none of these angular distributions extend beyond the crossover, if indeed there is 
one at all; the 143 MeV and 215 MeV data show strong Fraunhofer oscillations "beginning" 
(as a function of 0), but the data stop before the oscillations do. 

What Satchler discovered ~2s) was that "refractive" potentials could also be found, which 
fit the available data equally well, provided the imaginary diffuseness was allowed to 
increase with bombarding energy (by 30 ~ over the above energy range). Figures 22a-c 
compare the El8 N/F decomposition at 215.2MeV with those for two of Satchler's 
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Fig. 22a. A comparison of angular distributions for three potentials which fit the 160+~sSi  data equally well; the 
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Fig. 22c. The other of Satchler's potentials from Fig. 22a. 
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potentials. Although they do agree closely for 0 < 30 °, they are clearly not phase-equivalent 
potentials, for they predict distinctly different angular distributions beyond 30 ° , in accord 
with their diffractive and refractive natures. El8, as mentioned, has no real crossover, while 
the two refractive potentials exhibit more-or-less "slow" crossovers, occurring just about 
where the available data end. 

To attempt to explain their agreement for 0 < 30 °, we note that in all cases the angular 
distributions are clearly N-dominated over much of the range covered by the data, so that 
getting aN(O ) right, at all energies, is essential. We know that El8 accomplishes this, in the 
0 < 30 ° range, by reflection from Y(r) alone (i.e., the Coulomb rainbow tail). According to 
eqn. (3.12), this means that its N-slope is just 2nka, which indeed is confirmed by Fig. 22a. Its 
energy dependence consequently is just that given by the k-factor. 

Satchler's refractive potentials, on the other hand, are not "surface-transparent", i.e., their 
R v does not substantially exceed R w (and their aN(0 ) does not show the "kink" of El8). 
Consequently their aN(0 ) will not be determined by V(r) alone. Again using eqn. (3.12) as a 
qualitative guide, this surface-strength of W(r) will decrease their N-slopes below 2nka. It 
was evidently in order to increase this slope back to the El8 value that Satchler was forced 
to increase a I (and thus the "average a" to which the slope must be proportional). Figures 
22d and e compare the N and F components of the three angular distributions. 

Figure 23 compares the El8 potentials with those for Satchler's A-type potential, whose 
W(r) is energy-dependent. At large r (between 8 and 11 Fm), V(r)/W(r) is nearly the same for 
the two potentials, using the 38 MeV W(r). However, as E increases, the important r-range 
decreases, and the V(r)/W(r) for A-type deviates from that for El8. In particular, e.g., 
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Fig. 23. A comparison of two of the potentials from Fig. 22a. 

V(r) > W(r) for the low-energy A-type potential at all r-values, while V(r) and W(r) cross, 
for E18, at 7.5 Fm. This r _~ R behavior is better approximated by the high-energy A-type 
potential, for which V(r) and W(r) do cross, at 7 Fro. It is evidently by allowing a t to 
increase with E that Satchler is able to maintain the correct N-slope, and so to reproduce the 
E18 angular distribution at forward angles; with this insight available, it would seem that 
allowing W to increase with E might have done the job at least as well. 
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Fig. 24. N/F  decomposition for the angular distribution of Fig. 2. 
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4.7. Just far fun 

As a fitting close to this list of applications of the N/F decomposition we site a few 
interesting curiosities, as something of an indication of the range of angular distributions 
which can be produced by judicious variations in the refractive and absorptive parameters 
of the optical potential. 

4.7.1. Another hidden rainbow? 
Figure 24 shows the N/F decomposition of the 6Li 4- 9 ° Z r  angular distribution of Fig. 2. 

The potential is a typical "refractive" one, V _~ 5 IV, but R I ~ R + 2.5a. At forward angles the 
trajectories evidently do not penetrate deeply enough to encounter this refraction, and aN(0 ) 
and a F (0) show the customary parallel lines of a strong absorber, shifted by 201/4. However, 
around 22 ° and 40 °, dips reminiscent of the bright side of a nuclear rainbow occur in trF(0 ), 
changing its slope drastically and producing the N/F crossover, beyond which trF(0 ) 
dominates. This would seem to provide a strong argument for viewing the "hump" in trF(0 ) 
(obscured in da/d0 itself by the crossover) at ___ 55 ° as the main maximum of a nuclear 
rainbow. 

4.7.2. A bizarre ~-dip 
~-particle scattering from 4o Ca is one of the classic examples of "anomalous large-angle 

scattering", and Fig. 25 shows one of the fits which Delbar et al. t26) obtained to their 
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Fig. 25. The anomalous large-scale scattering of ct+4°Ca. Note the deep minimum at 120 °, which occurs in the 
Far-side amplitude. 
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experimental data by the use of (WS) 2 potentials. It displays a quite normal crossover at 25 °, 
and a good backward glory, but its unusual feature is the very sharp dip, distinctly in the 
Far-side amplitude, at 120 °. It is highly unlikely that this is a nuclear-rainbow dip, especially 
since i t f i l ls  in if W --* 0. As yet we have no simple explanation for it, though Delbar et al. c2s) 
found that, in the alternative (and very different) Internal/Barrier Amplitude decomposition 
of Brink and Takigawa, (27) it arises from destructive interference between the internal and 
barrier terms. The Fraunhofer diffraction minima, on the other hand, are always a "barrier" 
phenomenon, in agreement with our description in terms of peripheral d-windows. 

4.7.3. A pure Coulomb rainbow 
Figure 26 shows an example of when not to use the N/F decomposition. It is a case of 

purely electromagnetic scattering, with no nuclear potential at all, V = W = 0. The electro- 
static potential, however, is not point-Coulomb, but that of the customary uniform charge 
distribution. This is "more attractive" (i.e., less repulsive) than a point-Coulomb field, and 
produces the impressive forward-angle oscillations of a "pure" Coulomb rainbow, in which 
"Fresnel diffraction" clearly plays no role whatever. 

Even more curiously, however, the smoothly-falling tail of this rainbow is seen to "change 
character" at 40°; forward of 40 ° it is, as expected, purely Near-sided, but beyond 40 ° it is 
represented as a strong and smooth destructive interference between the Near and Far 
amplitudes. This serves as a useful warning that for a non-absorptive potential, which allows 
flux to pass through its center, the distinction between N and F becomes quite meaningless 
for central (small-d) trajectories. When they dominate, the N/F representation, though 
"true" by definition, may not be enlightening. 
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Fig. 26. Scattering by a uniform distribution of charge, with no nuclear potential. Note the fine Coulomb rainbow. 
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Fig. 27. Scattering by a pure glass ball (no absorption, no Coulomb) of refractive index n = 1.2; kR = 50. 

4.7.4. Pure #lass 
Finally, Fig. 27 shows an example from "classical optics": the scattering pattern by a pure 

glass ball (index of refraction = (1 + V/E) 112 = 1.2), with neither absorption nor Coulomb 
field. It produces a fine Far-side rainbow as well as back-angle "glory" oscillations, and is 
not substantially different from the refraction pattern of Fig. 17c, which differs only in the 
inclusion of Coulomb scattering. 

5. NUCLEAR FORWARD GLORY SCATTERING 

Formally, whenever the deflection function 0(f) passes through zero, dtr/dfl should 
contain a "forward glory" enhancement. (4) It will, of course, be completely masked by 
Coulomb scattering, but the suggestion has recently been made (2a) that a careful application 
of the optical theorem to heavy ion scattering may unambiguously reveal the forward glory 
contribution. 

The optical theorem, as usually stated for charged particle scattering, is 

fd~F  dtr dO'Ruthl ~ Im[f(0)--fRuth(0)], (5.1) 
LdD dfl _] + ~R = 

where dtr/df2 = If(0)[ 2 is the elastic scattering cross section dO'Ruth/dr ~-[fRuth(0)[ 2 the 
Rutherford (point Coulomb) cross-section, and a R is the total reaction cross-section. Special 
care should be taken when evaluating the integral in eqn. (5.1). Usually the lower limit is 

pPNP-F 
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replaced by a small angle 0 o and the contribution from the region 0 < 0 < 0 o is found to be 
oscillatory and small as long as the angle 0 o is chosen small enough. 

In the presence of a forward glory (real stationary phase infN(0 ) at 0 = 0 and •Igt), the 
amplitude f(0)--fRuth(0 ) may be approximately evaluated by the method of stationary 
phase, as was done originally by Ford and Wheeler. t4~ The result is 

f(0)--fRuth(0) ~ k-l(foe"]-i/2 IS~g, lexp 2i( - , (5.2) 
g 

where Eg / is the glory angular momentum, 0 = 2(d /d f ) (ae+f t )  is the total deflection 
function and a t and 6 e are the point Coulomb and nuclear phase shifts respectively. ISnl is 
the nuclear reflection coefficient evaluated at ~ge. 

Substituting (2) in (1), we finally obtain 

AtrR-----aR+ r ~-~ df~ J 

~ -  (fge+ 4n 1/ 2 / '  ) ~]d0/~leg92n "~x/21 She,el sin [2(aeg,+ 6 e , , ) - ~ l .  " n (5.3) 

Equation (5.3) clearly shows that Aa g should oscillate as a function of energy, with a local 
period given approximately by 

7Z 

P e  ~ lO/OE(at,e + re,) I "" 2rch/zG? (5.4) 

where z is the collision time associated with the forward glory trajectory. Under semi- 
classical conditions, this time may be related to the interaction potential through the usual 
classical relation. 

We should stress that Aa R has an oscillatory behavior as a function of energy, even in the 
absence of a real stationary phase point corresponding to 0 = 0330) The presence of a 
forward glory enhances these oscillations to an extent that renders Aa R amenable to 
unambiguous measurement. 

It is clear from eqn. (5.3) that Aa R is very sensitive to the details of 0 near the glory angular 
momentum. This sensitivity should be exploited fully in order to determine the details of the 
interaction potential at distances smaller than the strong absorption radius. It was clearly 
demonstrated in Ref. 28 that two different optical potentials, both accounting well for the 
ratio a/a Ruth in the forward angle region, generate quite different Aa R'S. 

To exhibit fully the dependence of Aa R on the underlying optical potential parameters, we 
work out below its form at high energies, E > V~ + V~. Both tr(() and 6(() simplify at high 
energiesta 1) (see Appendix on deflection functions), 

a ( ( )  _ - C~ /+  r / In( (  + 1/2)  (5.5) 

and 

b(() = ~-~ exp [ - (b - R )/a], (5.6) 

where C is Euler's constant, C = 0.5772156659, t/the Sommerfeld parameter, V o the strength 
of the nuclear interaction and (t ~ + 1/2) = b(2E/h) 1/2. 

Given a and 6, all other physical quantities appearing in Aa R, eqn. (5.2) may be 
calculated. We obtain ~31~ 

1 4  1 2  [ 2  ~ ]  Aa R~_AE ! e x p [ - B a / E  / ]sin ~ ( B I  +B21nE ) - - ~  , (5.7) 



where 
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= r 32n3hb~:a 11/2, 
A Lx/~pZ1Z2e2(boe_a) 3 (5.8) 

Z1Zee2 - C + ½ 1 n  2# + 
B1 = h(2/~)1/2 - ~  t~#rnaoo:~ ~ e x p [  a -J' (5.9) 

Z1Z2e2 (5.10) 
Be 2(2/#)1/2h, 

Wo B a = (npabo¢)l/2 ~ -  exp [ - (bo¢ - R)/a], (5.11) 

and hoe is obtained from d/d:(a ¢ + 6¢)] be: = 0 { a( V2a(Z,Z:2)27)" 
bg: = R 1+2--~-Z~_3 a 31nR-lnL-~-\---~--o j ]/j. (5.12) 

In calculating eqn. (5.7) we have assumed equal geometry for the real and imaginary parts of 
the optical potential. This restriction may easily be removed by using for a and R that 
appear  in B 3 (eqn. (5.11)) the relevant imaginary part  parameters. 

Equation (5.7) demonstrates clearly that at higher energies the amplitude of the glory 
oscillation increases with energy like E1/4exp[-B3/E1/2] .  Further, the local period of 
oscillation, P E, is(3 ~) 

rt 2rtE 3/2 
PE = = (5.13) 

(O/dE) (a o: + 6 o:) B1 + (In E - 2)B 2 ' 

and increases with E like Ea/2/ln E at higher energies. This is to be expected, since the 
collision time, z oc 1/P E, must decrease with increasing center of mass energy. 

I t  should be clear that the amplitude of oscillation, though an increasing function of 
energy eventually must saturate. The limiting value of Aa R may be easily obtained (3°) as 
simply - 2reRan, where Rab is the characteristic strong absorption radius that also defines the 
limiting geometrical value of the total reaction cross-section a R ~ nRa~" 

To obtain an idea of the value of Aa R, we present in Table 1 the result of a calculation 
obtained with the Christensen-Winther empirical potential ta 2) 

V,(r) = - 5 0  RxR2 e x p [ - ( r - R  1 - R 2 ) / a ]  [MeV] 
Rx + R  2 

R i = 1.233A~/3 - 0.978A T 1/3[fro] 

a = 0.63[fro]. (5.14) 

Table I. 

A Bx B2 B3 AaR P~ 
System [fm 2 MeV- x/4] [MeV- x/2] [MeV- i / z ]  [MeV- 1/2] (rob) (MeV) 

12C-~ 13C 77.46 13.93 7.10 4.66 1701.98 257.84 
x60+12C 67.80 20.27 9.91 5.92 1366.82 205.03 
x2C+24Mg 58.17 35.97 16.06 8.28 --940.17 148.98 
x60+28Si 47.95 71.31 28.18 12.5 --705.61 110.82 
~60+'°Ca 42.33 115.34 42.65 16.57 499.58 82.97 
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In the calculation of B3, we have used for W 0 the value 1/o/2, where V 0 = 50(R1R2)/(R 1 +R2) 
(see eqn. 5.14), and have assumed equal geometries. Five heavy-ion systems have been 
considered, 12C + 13C, 16 0 + 12C, 12 C "4- 24Mg, 160 + 28Si and 160 -~- 4°Ca at a laboratory 
energy corresponding to 20 MeV/Nucleon. 

It is clear from the table that the forward glory effect is most effective in light heavy ion 
systems. This fact is also clear from eqn. (5.8). The period of the energy oscillation, exhibited 
in the last column of Table 1, is quite large, indicating clearly that the physical process we 
are discussing is very fast. It is worthwhile mentioning that our expression for the local 
period, eqn. (5.13) is quite accurate, even at lower energies. Evaluating PE for the system 
160+12C at E = 40MeV, a case investigated in Ref. 28, gives a value of - 3 0  MeV, very 
close to the value obtained through an exact optical model calculation (see Fig. 2 of Ref. 28). 
The experiment planned at Saclay (160+ 12C elastic scattering at 20 MeV/Nucleon) t33J 
should shed some light on some of the questions discussed above. 

6. DEVIATIONS FROM OPTICAL BEHAVIOR 

6.1. Anomalous back-angle scattering 

In the previous sections we have emphasized at length the wave optical behavior of the 
heavy ion system. This behavior comes about as a result of several gross properties of the 
system. Its relatively large size (Near-Far interference), the strong absorption present 
(diffraction), strong Coulomb repulsion and nuclear attraction (refraction and rainbow) 
and a well-defined surface region (determining the fall-off of dtr/d0 in the shadow region). 
These features, quite common in most heavy-ion systems, constitute a convenient and useful 
"language" with which the elastic scattering may be described and analyzed as we have 
shown previously. Nuclei clearly exhibit other features besides the gross ones mentioned 
above. These other properties are more closely related to specific nuclear structure aspects, 
e.g., deformation. Therefore one would expect several important deviations from the optical 
behavior, which we discuss in this section. A well-known case usually cited as exhibiting 
these deviations is that referring to systems behaving anomalously at back angles (~t- 
scattering, 16 0 + 2 s Si, etc.). What one usually discovers in these systems is a large increase in 
a/tr Ruth(0) at back angles accompanied by a rather regular angular structure. Further, the 
excitation function a/aRuth(~,E ) at  0 = rr exhibits quite a conspicuous intermediate structure 
with an average width of about 1 MeV. To put the situation into perspective we show in Fig. 
28 a plot of the experimental excitation function dtree/df~(E, r~) for 160 + 28Si and 160 + 3°Si. 
One sees clearly that the data sit at a mid-point between a pure Rutherford (no nuclear 
structure whatsoever) and a pure strong absorption, El8 (nuclear structure manifested 
purely optically). 

Several interpretations have been advanced in the quest for a consistent description of the 
data. For a detailed discussion we refer the reader to the recent review by Braun-Munzinger 
and Barrette3 TM These interpretations range from a pure resonance, intermediate structure, 
picture affecting both the angular distributions and the excitation functions, to a pure-direct 
picture involving basically coupled channels feed-back-type effects. Neither of these extreme 
pictures seems to account for all facts of the data. Although recent measurements of angular 
distributions of ~-transfer reactions, as well as inelastic scattering, of systems such as 
160 + 2aZi indicate that a pure, isolated resonance generated, intermediate structure inter- 
pretation of the gross structure of the anomalous back angle elastic scattering is not viable, 
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owing to the lack of clear channel correlations, some type of resonance-based phenomenon 
is, however, certainly taking place and generating the fine structure seen in most excitation 
functions. 

Simple "direct" models have also been proposed for the purpose of explaining the gross 
features of the cross section at back angles. These range from simple changes in the 
"normal" optical potentials to simple changes in the "normal" elastic S-matrix. The 
necessity for invoking these changes in the normal "El8" type description arose from two 
important observations; (a) the quite conspicuous rise in tr/tr Ruth (180 °) to a value, at Ec,, = 
35 MeV, almost four orders of magnitude bigger than the corresponding "El8" value, and 
(b) the period of the angle oscillations, A0, supplies a value of the contributing angular 
momentum Eo(E ) through A0 ~_ n/fo(E), which is twice as large as the angular momentum, 
~e(E) that determines the period, AE, of the energy oscillation in the 180°-excitation 
function, AE -~ 1/[d~E(E)/~E ]. 

The first anomaly has been accounted for through the use of the so-called surface 
transparent potentials. These optical potentials are characterized by an imaginary part with 
very small diffuseness which results in an increased reflection. However, these potentials, 
though quite adequate in describing the angular distributions, fail dramatically in de- 
scribing the second anomaly associated with the excitation function. This clearly points to 
the need for a second important modification of the normal optical E18 potential, namely 
the addition of a small, albeit important parity-dependent component (proportional to 
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(_) t ) ,  which would not modify the angular distribution since it contributes mostly at back- 
angles. The 180 ° excitation function would then behave approximately ,-~ sin 2 { [• g (E)/2]n}, 
thus giving rise to a local period AE = 2/[dEE(E)/d], permitting the identification fo(E) = 
fe (E). Ref. 35 exhibits the type of fit to the E-oscillations obtained by the Minnesota group 
with the above-mentioned two modifications in the optical potential describing 160 + 2aSi. 
A fit of a similar quality to the E-oscillations in the 180 ° excitation function was obtained in 
Ref. 36 using, as a starting point, an S-matrix description. The elastic S-matrix used contains 
a normal optical El8 type contribution, a parity-independent "window-like" contribution 
that peaks at an f, slightly lower than the grazing one, and a small parity-dependent 
"window". The elastic S-element without the parity-dependent window was found to 
resemble very much the one generated from the surface transparent optical potential. The 
findings of Ref. 36 clearly support the-conclusions reached by the Minnesota group 
concerning the need for a surface-transparent, parity-dependent optical potential. 

We shall not attempt to discuss the microscopic origin of the above deviations from the 
optical behavior, as this would take us beyond the scope of the present review. For 
discussions on these and other points, we refer the reader to Ref. 34. We might just mention 
that the window-like deviations discussed above might be connected to the feedback onto 
the elastic channel from the coupling to an ~-transfer channel. The fact that the anomaly at 
back angles is much enhanced when the two partners are a-nuclei lends some support to the 
above idea. 

6.2. Static and dynamic deformation effects: Long range absorption 

Another important case showing a clear deviation from optical behavior involves the 
scattering of deformed targets and/or projectiles at energies close to the Coulomb barrier. 
As a result of the strong Coulomb excitation of collective states, one expects a gradual 
depopulation of the elastic channel, even at sub-barrier energies. A nice example showing 
this effect is presented (aT) in Fig. 29 involving the system 2°Ne + 19Sm, A = 148, 150 and 152. 
The strength of the coupling of the elastic O ÷ channel to the 2 ÷ state increases gradually 
from vibrational (148Sm) to rotational (152Sm), as is clearly seen in the 2°Ne spectrum (Ref. 
37). Consequently the depopulation (absorption) in the 2°Ne + ~ 52Sm is much stronger than 
either the 2°Ne + 15OSm and 2°Ne + 148Sm" The cross-section ratio a(Ne + 152Sm)/a(Ne + 
148Sm) reaches its smallest value of ~ 0.2 at back angles. 

1.0 

0.~ 

"~0.6 

0 . 4  

0.2 

I I I I I 

I I I I I 
5 0 "  6 0 *  9 0 *  1 2 0 "  1 5 0 "  1 8 0 "  

c .m.  

Fig. 29. Elastic scattering of 2°Ne on 19Sm at 70 MeV, showing the effects of long-range absorption. 
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The trend of the data clearly points to the presence of long-range absorption to be 
contrasted with the nuclear short-range absorption responsible for the diffractive behavior 
discussed earlier. Actually the short-range nuclear absorption, at the sub-barrier energies 
involved in the 2°Ne-ASm system under discussion, would give rise to a minor deviation 
from the Rutherford scattering, concentrated at angles very close to 180 °. We shall return to 
this point later. 

The long-range nature of the absorption referred to above cannot, certainly, be accounted 
for by a change in the optical potential, and one has to resort to coupled channels 
calculations. A more drastic departure from the optical behavior arising from the same 
coupled channels effect is shown in Ref. 38. The c.m. energy at which the data were taken is 
slightly above the Coulomb barrier of 180 + 184W, and then one would expect a "Fresnel" 
form of a/a Ruth in the forward hemisphere. As one can clearly see the long-range absorption 
is quite strong even in this higher-energy case, resulting in a drastic modification of the 
"Fresnel" shape. Similar features are seen in the 12C + 184W system a t  Ela  b = 70 MeV. 

A way of simplifying the analysis of data such as the above one is through the construc- 
tion of a component in the optical potential that represents the feed-back of the inelastic 2 + 
channel into the elastic channel. This may easily be done through Feshbach's theory of the 
optical potential, which gives, in the particle case of two channels, the following form of the 
polarization potential 

Vpol(r,r') = Vo2(r)Gt2+)(r,r')V2o(r'), (6.1) 

where Vo2(r) is the coupling potential and Gt2+)(r,r ') is the 2+-channel Coulomb-modified 
Green's function. 

When expanded in partial waves, the radial part of Vpo l, would necessarily be angular 
momentum dependent and non-local. However, a locally-equivalent potential may be 
obtained approximately through the identification 

~. Vpol(r,r')~ e(kr')dr' = Vpol(r)~b e(kr), (6.2) 

where ~bt(k,r ) represents the radial wave function in the elastic channel. At subbarrier 
energies, ~,e (k,r) may be approximated by the regular Coulomb wave function F e (kr), which 
makes possible the construction of Vpol(r ). The resulting expression for Vpol(r ) may be 
written as, ignoring the energy loss involved in the excitation process, 

.2n E k4 Br(E2)~ 372+1 
v ------.pol(r)=-,25r/~/2 ZZr ez ~ ( ~ + 1 )  2 

&3tan-17 

a (o; (a; 
- -  + 

+ ( ~ + 1 )  2 r (~-i~)z r r -= iVpol(r ). (6.3) 

As a result of the assumption that the energy loss is zero Vpol(r ) comes out to be purely 
negative imaginary. The situation is reversed in the case of large energy losses, as Vpol(r ) 
becomes predominantly real. The reason is that in the former case the vibrational period is 
much larger than the collision time (sudden limit), therefore the system simply does not have 
enough time to react during the collision process and accordingly no modifications are 
inflicted on the real interaction. In the large-energy-loss case (virtual excitation of giant 
resonances), the system manages to execute several vibrations during the collision process, 
thus resulting in a change in the effective real ion-ion interaction, without inflicting much 
change in the absorptive component. For a detailed discussion on this point, see Ref. 39. 

The above long-ranged potential is a rather smooth function of both f and r. This feature 
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permits the inclusion in a/trRuth of the effect arising from the polarization potential in a 
simple manner. At energies below the Coulomb barrier the elastic scattering amplitude is 
dominated by the Near-sided Coulomb part. Accordingly only one turning will contribute. 
Since the phase shift arising from Vpol(r) is purely imaginary owing to the weakness of the 
perturbation, the total phase becomes 

"/~ f.,  I?p°l(r) dr 6 e = at+z~-~ kc(r ) --' (6.4) 

and therefore the ratio of the elastic scattering cross section to the Rutherford one becomes 

[ 2Pf°~f'P°'(r)dr] (6.5) 
(7 Ruth = exp - ~ -  kc(r ) j. 

Note that the above quantity is a function of angle since the d that appears in fro, k,(r) and 
Vpol(r) is just the Coulomb stationary point, related to the angle through the Rutherford 
relation (d +½)/r/= cot 0/2. The integral in the exponent of eqn. (6.5) can be evaluated in 
closed form giving the final result, for a pure quadrupole excitation 

where 

and 

- [ 16q2g(O)] = exp - 
(7 Ruth 

q2 _ r~ k'* [BT(E2)gT(¢T) Bp(E2)gp(~p).] 
5-~-~ L Z2r e2 4 Z2 e2 .j 

0 1 9[-lf " O'~4+(tan~)'(1-(tan~)~(rc-O)) 2] 

(6.6) 

(6.7) 

(6.8) 

where T and p refer to target and projectile. The angular function g(0) attains its maximum 
value of unity at 0 = n, and it vanishes at 0 = 0. The solid lines in Fig. 29 are simply the 
O/O'Ruth of eqn. (6.6) calculated after approximately accounting for the small energy-loss 
encountered in 2°Ne+ Sm, through the quantities g r(~r) and gP(~e) with ~ = ½rI(AE/E). 
These quantities are tabulated in Ref. 39b. 

The simple treatment of the feed-back problem involving the 0 + and 2 + channels, may 
easily be extended to include higher order processes (reorientation, 4 + excitation, etc.). For 
more details we refer the reader to Ref. 40. 

We turn now to energies slightly above the Coulomb barrier, Ref. 38 and 39; At such 
energies one would expect the Near-side amplitude to be still dominant. However, at least 
two complex stationary points will contribute. Accordingly, the amplitude becomes 

1 /~ oo dr] (6.9) 
fN(0) = k~/sin O i=~x, 2 ~ exp [2i6(2i)--i2iO] l exp [--~- i fro(x,) V~p~' (r ) I 

where 3(2i) and 0'(2i) are, respectively, the total complex phase shift and the derivative of the 
classical deflection function corresponding to the Coulomb plus the short-ranged nuclear 
interaction, evaluated at the complex 2,. 

The differential elastic cross section corresponding to fN(0) above would then show a 
marked deviation from the pure "Fresnel" shape. Actually the fit shown in Ref. 41 was 
obtained by adding a somewhat slightly different polarization potential (from that of eqn. 
(3)) obtained by Love et al. to a complex Saxon-Woods potential. The dashed curve shows 
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the cross section without the polarization potential. A similar quality fit was obtained by 
Baltz et al. (39) using the form offN(0) given above, eqn. (6.9). Owing to the slow dependence 
of 

(~'!, r dr + _] 
exp [ -  h2- fro(a) kc~(r) 3 

on 2, one may, for the purpose of obtaining a simple qualitative description of the 
phenomenon, factor out the above exponential from the d-sum and evaluate it at an average 
value of 2, )7 = (21 + 22)/2. This should be a reasonable prescription for the calculation of 
a/aRuth at angles close to the big "Fresnel" peak. The result of such a calculation is shown in 
Ref. 41 (the dashed-dotted line). 

7. SUMMARY 

Elastic heavy-ion angular distributions result from a complex interplay of refractive, 
diffractive and interference phenomena, which must be understood in some detail if useful 
physical information is to be extracted from the art of fitting such angular distributions with 
optical potentials. Because these potentials are strongly absorbing, diffraction plays a 
central role in their angular distributions. The traditional Kirchoff (short-wavelength) 
approximation to the scattering amplitude for diffraction by a "distribution of absorbers" 
p(r) has the Born-approximation form 

f(O) ~ S eiq'rp( r ) dar, (7.1) 

in which the exponential or "retardation" factor assures that the contributions from the 
various points r of the absorber are weighted with phases proportional to their optical path- 
lengths from the observer. Although this Kirchoff formulation describesf  (0) as the coherent 
sum of contributions from all "internal" points of the area of the absorber (in the simple case 
of a thin planar absorber), an alternative but equivalent interpretation can be obtained by 
transforming this area integral into a line integral around the boundary of the absorber, as 
Born and Wolf (a) discuss for the case of a sharp-edged absorber. Physically this boundary 
integral describes the "edge wave" or "boundary diffraction wave", which is simply an 
alternative description of the scattered wave for a strong absorber. 

This edge-wave formulation (see Fig. la) seems to us to offer exactly the insight needed to 
understand heavy-ion angular distributions, provided it is generalized to (a) permit the 
edge-thickness (the diffuseness a of the optical potential) to be nonzero, and (b) include 
nuclear and Coulomb refractive effects. In addition, in the kR >> 1 limit, the only points of 

Fig. 30. Repeat of Fig. 8, showing origin of edge waves from regions of azimuthal width Aq~ ~ (f0)- 1/2 near the 
scattering plane. 

p p N P - F  ~ 
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the integral (7.1) which contribute to f(0) are those in the scattering plane. The boundary 
integral then shrinks to just two diametrically-opposed limb points, one Near and one Far, 
as indicated in Fig. 30. They will, of course, be modified by refraction, but it is this "natural" 
decomposition off(0) into two edge-point or edge-slit contributions which leads to the 2-slit 
representation of the amplitude for a strong absorber. Similarly, the N/F decomposition of 
the amplitude, although entirely general, acquires particular cogence in this strong- 
absorption case, whenfN(0) andfF (0) have the physical significance of single-slit diffraction 
patterns. The exponential shapes of these patterns are approximated [for equal geometries 
of V(r)+ W(r)] by eqn. (1.10), whose slope parameters fl are 

fin = --Im(r~/a), flF = Im(r~o/a), (7.2) 

with Im ro s and Im ro E given by eqns. (3.12) and (3.14). 
Figure 31 (which repeats Fig. 3c) provides a caricature of aN(0) and trr(0), showing that 

at energies high enough above the Coulomb barrier for the trajectories to feel the nuclear 
potential, a sufficiently strong real part (nuclear refractor) can make the F-slope steeper 
than the N-slope, producing a Fraunhofer crossover and a localized angular region of N/F 
interference oscillations. If the refraction is weak, aN(0 ) and trF(0 ) may only have roughly 
equal slopes, giving the pattern an extended region of Fraunhofer oscillations, of the type 
more familiar for simple "black disc" absorbers. 

Finally, it is of considerable practical importance to recognize that the Near and Far slits 
(which can of course move (in r) with angle) may well occur at different distances of closest 
approach, and so explore different regions of the optical potential. A full understanding of 
how different parts of the optical potential affect different parts of the angular distribution 
can only be achieved by examining both aN(0 ) and aF(0), as the examples of Section 4 make 
abundantly clear. 

In closing, we remark again that all N/F decompositions were done with a modified 
version of the elastic-scattering part of PTOLEMY. (42) It is available upon request, in a 
VAX version, from KWM at the University of Wisconsin. 
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Fig. 31. Repeat of Fig. 3d. 
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NOTES ADDED IN PROOF 

(1) We are indebted to C. Marty [private communication and Z. Phys. A309, 261 (1983)] 
for pointing out that eqns. (5.1) and (5.2) should be generalized, because the integral of (5.1) 
is, in the 00 ~ 0 limit, oscillatory and thus ill-defined. The imaginary part off(0)--fRuth(0) 
should be replaced by a linear combination of its imaginary and real parts, as Marty points 
out. In fact, Jeppesen et al. [Phys. Rev. C27, 697 (1982)] note that the resulting expression 
involves both real and imaginary parts of the "nuclear" amplitude (both of which contain 
the glory oscillation of Section 5), and describe a method of analysis which may permit the 
extraction of both of them from experimental data; Marty points out that this may be very 
difficult for heavy ion scattering. 

(2) We are equally indebted to G.R. Satchler, who observes that our characterization of 
optical potentials as "refractive" or "diffractive", according to whether the Woods-Saxon 
parameter W/V is smaller or larger than unity, can be quite misleading. As Satchler points 
out, it is the value of W(r)/V(r) in the surface region that counts, and this depends not only 
on W/V but also on the geometries of the two potentials. Dr. Satchler also informs us that 
our conjecture just above Fig. 24 is incorrect; a fit to the data does require that it is al rather 
than W which is varied with E. 

We thank our colleagues for their interest, and happily stand corrected. 
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A P P E N D I X  A 

F E R M A T  A N D  T H E  D E F L E C T I O N  F U N C T I O N :  L E N S E S  AS P H A S E - S H I F T E R S  

In Section 2.2 we obtained a high-energy approximation tofN(0), eqn. (2.10), 
1 [ i ~1/2/'o 

fN(O) "~ ~ 2 ~ s i n O )  J 0  eiE2'(°-<°]t'/2dt' (A.1) 

by writing (*) the standing-wave Pc(cos 0) as a sum of two running waves, exp [ +  itO]. It is more fundamental, 
however, to recognize (see, e.g., Schaeffer, Ref. 5b, eqn. 2.35) that [ 2 5 ( t ) - t 0 ]  = S(t,O) is the classical-mechanics 
action, S k(r)-dr, integrated along the trajectory with impact parameter b = t /k  and scattering-angle 0. It then 
becomes clear that the stationary-phase approximation to eqn. (A.1) is nothing but Fermat's principle of least 
action or least time: starting with a plane wave incident on an "optical device" (scattering center or potential), the 
geometrical ray which exists with a deflection angle 0 does so by choosing that impact parameter which minimizes 
its action: 

d [ 2 a ( t ) -  gO] = (A.2) 0. 

This nicely justifies the identification of 0 = 2a'(t) as a "trajectory equation". 
In the Glauber or small-0 approximation, e.g., the action is simply 

S = S(t) = 2,5(t) = [k(z)-  k] dz. (A.3) 

That is, the phase shift is the difference in phase accumulation (optical path length) between trajectories followed 
with and without the optical potential. The trajectory equation then asserts that the deflection angle 0 depends on 
how rapidly this phase difference changes with impact parameter. In optical terms, e.g., a plane-parallel slab of glass 
shifts a ray "sideways", but does not change its direction because ~'(b) = 0. A prism can bend rays, but since for it 
8'(b) = const., it bends them all through the same angle. It can thus not bring parallel rays to a focus, but a lens can, 
by giving 6(b) a non-linear dependence on b. Since this provides a particularly simple example of a deflection 
function in a familiar context, we briefly work out the details in the thin-lens (small-0) approximation. If, in Fig. 
A-I, the thickness of glass (of refractive index n) traversed at impact parameter b is t(b), then the phase of a ray 
entering with this impact parameter is shifted relative to the n = 1 case by the optical path length 

2~5(b) = ( n -  1)kt(b). (A.4) 

From the figure, t(b) = (R 2 - -  b2) t/2 - ( R  - T) ~-- T -  b2/2R for a piano-convex spherical lens, with b << R. Conse- 
quently 

dt b 

db R'  

and 

I 1 ( n -  1)b" (A.5) 2dt~ = ( n ,  1)k l d t  
d t  k ~  R 

- t ( b )  

f 

28(b) = (n - I )k t (b )  

Fig. A-1. Application of the deflection-function equation, O(b) = 2d~/dt, to a thin lens. 
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Fig. A-2. 3(E) for a real nuclear potential, viewed as a spherical lens. 

However, recalling the "lensmaker's equation", which gives the focal length of this lens as f =  R/(n  - 1), we see 
that our deflection function for this Far-side ray is simply 

0(~) = - b / f ,  (A.6) 

exactly the angle required to send all parallel rays through the focal point. 
Looked at this way, a curve of ~ vs. b for any spherically-symmetric potential is nothing but  a cross section of the 

equivalent lens. Fig. A-2 shows a typical example for a Woods-Saxon type real potential with a << R. The 
equivalent "lens" is nearly a spherical ball of glass, with a thin "equatorial ridge" coming from the tail of the 
potential. In the WKB approximation, 5(b) has a vertical slope for b ~ R for such a potential, provided E < EF 
(Fig. 9). This corresponds to a logarithmic singularity in O(b), which is the "orbiting" phenomenon that makes the 
slope of a t (0 )  steeper than that of CrN(0), and so leads to the entire Fraunhofer crossover phenomenon.  

For  the Coulomb potential, on the other hand, 

0(d) = 2 tan-lr//~" z 2r//E (A.7) 

for large ~, implying that 

26(d) ~ 2~/In (E), (A.8) 

i.e., 6(E) increases with ~. The equivalent lens is thus diverging; because its curvature is small, we approximated it  in 
Section 3.5 as a prism, whose effect is to shift aN(0 ) relative to CrF(0), rather than to change their slopes, as Fig. 14 
illustrates. 
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A P P E N D I X  B 

T H E  K N O L L - S C H A E F F E R - G L A U B E R - B O R N  A P P R O X I M A T I O N  

T O  T H E  D E F L E C T I O N  F U N C T I O N  I N  T H E  E >> V L I M I T  

Knoll and Schaeffer (s) obtained a simple approximation to 0(:) by expanding the WKB 0(:) to first order in VIE. 
We show that this Born approximation is equivalent to using the Glauber approximation to the phase shift, and 
point out a very simple interpretation of it. 

In the high-energy, small-0 limit Glauber approximates the phase shift by an integral along a straight-line 
trajectory, 

26(b) = - ~ V[(b 2 +z2) 1/2] dz. (B.1) 

In this approximation the deflection function is 

O(b) = 2(d6/db)/k 

2E .J- ~x/b 2 + z 2 V'[(b2 + z2)X/2] dz 

_ 1 ~ * b  
I - V'(r)dz 

Edo r 

~o b 
= 1 ~ ~ V ' ( r ) d r ,  

E db x / r 2 - b  2 (B.2)(B.3) 

using r 2 = b 2 + z 2. This is exactly eqn. (4.32) of Knoll and Schaeffer ;(s) they replace b by r0, but since, according to 
our eqn. (2.15), b = to[1 - V(ro)/E] 1/2, b ~, r o to lowest order in V/E. 

Written in the form 

O(b) = ~ ~o r V'(r) dz, (B.4) 

this small-angle approximation to O(b) has a very simple physical interpretation, for - V ' ( r )  = Fr(r), the radial 
component of the force on the particle at a distance r from the center of the potential. But b/r is just the cosine factor 
necessary to project out the component of this force transverse to the straight-line trajectory, - (b/r)V'(r) = F ±(r). 
The Glauber approximation neglects momentum transfer along this line (which is second-order in 0), so v II is 

l- 

Fig. B-1. The straight-line trajectory of the Glauber approximation, indicating phase-shift accumulation as the 
trajectory passes through the potential. 
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constant and we can rewrite the z-integral as a time-integral, dz = v lldt: 

O(b) = ~ VllF± (r)dt  

= - ' ~ - j _  F L d t  

k l(b) 
= (B.4) 

kll 
That  is, al though in this approximation its trajectory is a straight line, it accumulates transverse momentum 
transfer, giving the deflection function the classical mechanics interpretation 

26'(b )/k = O(b ) ~- sin O(b ) = k ~ (b )/k u. (B.5) 


