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Nuclear Supersymmetry
Roelof Bijker

Instituto de Ciencias Nucleares, Universidad Nacional Autbnoma de México,
Apartado Postal 70-543, 04510 México, D.F., México

Abstract. The concept of symmetries in physics is briefly reviewed. In the first part of these lecture
notes, some of the basic mathematical tools needed for the understanding of symmetries in nature are
presented, namely group theory, Lie groups and Lie algebras, and Noether’s theorem. In the second
part, some applications of symmetries in physics are discussed, ranging from isospin and flavor
symmetry to more recent developments involving the interacting boson model and its extension to
supersymmetries in nuclear physics.
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INTRODUCTION

Nuclear structure physics has seen an impressive progress in the developrabnt of
initio methods (no-core shell model, Green’s Function Monte Carlo, Coupled Clusters,
...), mean-field techniques and effective field theories for which the ultimate gaal is
exact treatment of nuclei utilizing the fundamental interactions between nuc[épns
Allinvolve large scale calculations and therefore rely heavily on the available computing
power and the development of efficient algorithms to obtain the desired results.

A different, complementary, approach is that of symmetries and algebraic meth-
ods. Rather than trying to solve the complex nuclear many-body problem numerically,
the aim is to identify effective degrees of freedom, develop schematic models based
upon these degrees of freedom and study their solutions by means of symmetries, etc.
Aside from their esthetic appeal, symmetries provide energy formula, selection rules
and closed expressions for electromagnetic transition rates and transfer strengths which
can be used as benchmarks to study and interpret the experimental data, even if these
symmetries may be valid only approximately. Historically, symmetries have played an
important role in nuclear physics. Examples are isospin symmetry, the Wigner supermul-
tiplet theory, special solutions to the Bohr Hamiltonian, the Elliott model, pseudo-spin
symmetries and the dynamical symmetries and supersymmetries of the IBM and its ex-
tensions.

The purpose of these lecture notes is to discuss several new developments in nuclear
supersymmetry, in particular evidence for the existence of a new supersymmetric quartet
in the A ~ 190 mass region, consisting of th#1230s and®31%4r nuclei, and correla-
tions between different one- and two-nucleon transfer reactions. In the first part of these
lecture notes, a brief review is given on some of the basic mathematical concepts needed
for the understanding of symmetries in nature, namely that of group theory, Lie groups
and Lie algebras, and Noether’s theorem. In the second part, these ideas are illustrated by
some applications in physics, ranging from isospin and flavor symmetry to more recent
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developments involving the interacting boson model and its extension to supersymme-
tries in nuclear physics. Some recent review articles on the concept of symmetries in
physics are [2, 3, 4, 5].

SYMMETRIES AND GROUP THEORY

Symmetry and its mathematical framework—group theory—play an increasingly impor-
tant role in physics. Both classical and quantum systems usually display great complex-
ity, but the analysis of their symmetry properties often gives rise to simplifications and
new insights which can lead to a deeper understanding. In addition, symmetries them-
selves can point the way toward the formulation of a correct physical theory by providing
constraints and guidelines in an otherwise intractable situation. It is remarkable that, in
spite of the wide variety of systems one may consider, all the way from classical ones to
molecules, nuclei, and elementary particles, group theory applies the same basic princi-
ples and extracts the same kind of useful information from all of them. This universality
in the applicability of symmetry considerations is one of the most attractive features of
group theory. Most people have an intuitive understanding of symmetry, particularly in
its most obvious manifestation in terms of geometric transformations that leave a body
or system invariant. This interpretation, however, is not enough to readily grasp its deep
connections with physics, and it thus becomes necessary to generalize the notion of
symmetry transformations to encompass more abstract ideas. The mathematical theory
of these transformations is the subject matter of group theory.

Group theory was developed in the beginning of the 19th century by Evariste Galois
who pointed out the relation between the existence of algebraic solutions of a polynomial
equation and the group of permutations associated with the equation. Another important
contribution was made in the 1870’s by Sophus Lie who studied the mathematical theory
of continuous transformations which led to the introduction of the basic concepts and
operations of what are now known as Lie groups and Lie algebras. The deep connection
between the abstract world of symmetries and dynamics—forces and motion and the
fundamental laws of nature—was elucidated by Emmy Noether in the early 20th century.

The concept of symmetry has played a major role in physics, especially in the 20th
century with the development of quantum mechanics and quantum field theory. There is
an enormously wide range of applications of symmetries in physics. Some of the most
important ones are listed below [2].

« Geometric symmetriedescribe the arrangement of constituent particles into a
geometric structure, for example the atoms in a molecule.

« Permutation symmetriegn quantum mechanics lead to Fermi-Dirac and Bose-
Einstein statistics for a system of identical particles with half-integer spin
(fermions) and integer spin (bosons), respectively.

« Space-time symmetrid¢ix the form of the equations governing the motion of the
constituent particles. For example, the form of the Dirac equation for a relativistic
spin-1/2 particle

(iv'ou —my(x) =0
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FIGURE 1. Evariste Galois (1811-1832), Sophus Lie (1842-1899) and Emmy Noether (1882-
1935) [6].

is determined by Lorentz invariance.

« Gauge symmetrieftx the form of the interaction between constituent particles and
external fields. For example, the form of the Dirac equation for a relativistic spin-
1/2 particle in an external electromagnetic figlg

[0, — eAy) —m] y(x) =0

is dictated by the gauge symmetry of the electromagnetic interaction. The (electro-
)weak and strong interactions are also governed by gauge symmetries.

« Dynamical symmetrieféx the form of the interactions between constituent particles
and/or external fields and determine the spectral properties of quantum systems. An
early example was discussed by Pauli in 1926 [7] who recognized that the Hamil-
tonian of a particle in a Coulomb potential is invariant under four-dimensional ro-
tations generated by the angular momentum and the Runge-Lenz vector.

ELEMENTS OF GROUP THEORY
In this section, some general properties of group theory are reviewed. For a more
thorough discussion of the basic concepts and its properties, the reader is referred to
the literature [8, 9, 10, 11, 12, 13, 14].
Definition of a group
The concept of a group was introduced by Galois in a study of the existence of

algebraic solutions of a polynomial equations. An abstract g@up defined by a
set of elementsG;, Gj, Gy, .. .) for which a “multiplication” rule (indicated here by)
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combining these elements exists and which satisfies the following conditions.

« Closure. o
If Gi andG;j are elements of the set, so is their proddct G; .

« Associativity.
The following property is always valid:

éio(éjoék): (GioGj)oGy.

« ldentity. .
There exists an elemehtof G satisfying

EoGi =GioE=G;.

. Inverse. R
For everyG; there exists an elemeﬁr1 such that

GAioGAi_lzéi_loéi:é.

The number of elements is called thweler of the group. If in addition the elements of a
group satisfy the condition of commutativity, the group is called an Abelian group.

« Commutativity.
All elements obey o
GioGj=GjoG.
Lie groups and Lie algebras

For continuous (or Lie) groups all elements may be obtained by exponentiation in
terms of a basic set of elemegisi= 1,2, ...,s, calledgeneratorswhich together form
the Lie algebraassociated with the Lie group. A simple example is provided by the
group of rotations in two-dimensional space, with elements that may be realized as

G(a) = exp—ialy] , (1)

whereaq is the angle of rotation and

A ) 7] 7]
I, = —i (x@—ya—x> , 7))

is the generator of these transformations inxhg plane. Three-dimensional rotations
require the introduction of two additional generators, associated with rotationsadthe

andy-z planes,
N N, 17} - ) 7}
ly=—i <ZE(_X¢9_2> , Ix=—i (yd_z_zd_y> ; (3)
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Finite rotations can then be parametrized by three angles (which may be chosen to be
the Euler angles) and expressed as a product of exponentials of the generators of Egs. (2)
and (3). Evaluating the commutators of these operators, we find

“Ax7 IAy] = iIAz ) ['Aya rz] = iIA>< y [|AZ> IAx] = iIy ) (4)
which illustrates the closure property of the group generators. In general, the operators
G,i=12,...,s define d.ie algebraif they close under commutation
[Qi,@j]zgcﬁgk, (5)

and satisfy the Jacobi identity
[in [QJanH + [Qka [legj]] + [gjv [@ka QIH =0. (6)

The constantsikj are calledstructure constantsand determine the properties of both the
Lie algebra and its associated Lie group. Lie groups have been classified by Cartan, and
many of their properties have been established.

The group of unitary transformations mdimensions is denoted iy (n) and of ro-
tations inn dimensions bysQ(n) (Special Orthogonal). The corresponding Lie algebras
are sometimes indicated by lower case symhgis) andsa(n), respectively.

Symmetries and conservation laws

Symmetry in physics is expressed by the invariance of a Lagrangian or of a Hamilto-
nian or, equivalently, of the equations of motion, with respect to some group of transfor-
mations. The connection between the abstract concept of symmetries and dynamics is
formulated as Noether's theorem which says that, irrespective of a classical or a quantum
mechanical treatment, an invariant Lagrangian or Hamiltonian with respect to a continu-
ous symmetry implies a set of conservation laws [15]. For example, the conservation of
energy, momentum and angular momentum are a consequence of the invariance of the
system under time translations, space translations and rotations, respectively.

In quantum mechanics, continuous symmetry transformations can in general be ex-
pressed as

Uexp(iZaj@J) . @
]

States and operators transform as

@) —|¢)=Ulp), A—-A=UAUT. ®)
For the Hamiltonian one then has
H—H =UHUT=H+i5 aj[g;,H]+ 0(a?). 9)
]
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When the physical system is invariant under the symmetry transformattigribe
Hamiltonian remains the sank& = H. Therefore, the Hamiltonian commutes with the
generators of the symmetry transformation

[6j,H] =0, (10)

which implies that the generators are constants of the motion. Eq. (10), together with the
closure relation of the generators of Eq. (5), constitutes the definition of the symmetry
algebra for a time-independent system.

Constants of motion and state labeling

For any Lie algebra one may construct one or more operﬁm&ich commute with
all the generatorg;”

[4,6i]=0, 1=12...,r, j=12,...5. (11)

These operators are call€asimir operatoror Casimir invariants They may be linear,
guadratic, or higher order in the generators. The numbef linearly independent
Casimir operators is called the rank of the algebra [11]. This number coincides with
the maximum subset of generators which commute among themselves (waltfut
generator¥

[6a,0p] =0, a,B=12,...,r, (12)

where greek labels were used to indicate that they belong to the subset satisfying
Eq. (12). The operator&s;, §o) may be simultaneously diagonalized and their eigen-
values used to label the corresponding eigenstates. o

To illustrate these definitions, we consider #ue2) algebra(Jx, Jy, Jz) with commu-
tation relations

[fXa JAY] :ifz, “AZa JAX] :ifY’ [jAY7 JAZ} :ifX7 (13)

which is isomorphic to theso(3) commutators given in Eq. (4). From Eq. (13) one
can conclude that the rank of the algebra is 1. Therefore one can choosggas the
generator to diagonalize together with the Casimir invariant

P=1g+iG+0z. (14)

The eigenvalues and branching rules for the commutin@?ﬁe’@a) can be determined
solely from the commutation relations Eq. (5). In the cases@R) the eigenvalue
equations are A

Plm)y =nilim), Jzljm) = mjm) , (15)

wherej is an index to distinguish the differet eigenvalues. Defining the raising and
lowering operators R o
J+ = Ixxijy, (16)
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and using Eq. (13), one finds the well-known results

. . 1
nj=j(j+1), J:O,E,l,..., a7
with m= —j, —j+1,...,j . As a bonus, the action gf. on the|jm) eigenstates is
determined to be .
jelim =V (Fm(j£m+1)|jm=1) . (18)

In the case of a general Lie algebra, see Eq. (5), this procedure becomes quite com-
plicated, but it requires the same basic steps. The analysis leads to the algebraic deter-
mination of eigenvalues, branching rules, and matrix elements of raising and lowering
operators [11].

Thesymmetnalgebra provides constants of the motion, which in turn lead to quantum
numbers that label the states associated with a given energy eigenvalue. The raising
and lowering operators in this algebra only connect degenerate states. The dynamical
algebra, however, defines the whole set of eigenstates associated with a given system.
The generators are no longer constants of the motion as not all commute with the
Hamiltonian. The raising and lowering operators may now connect all states with each
other.

Dynamical symmetries

In this section we show how the concepts presented in the previous sections lead to
an algebraic approach which can be applied to the study of different physical systems.
We start by considering again Eq. (10) which describes the invariance of a Hamiltonian
under the algebrg = (§j)

H, g]] =0, (19)

implying thatg plays the role of symmetry algebra for the system. An eigenstate of
with energyE may be written a$l"y), wherel labels the irreducible representations of
the groupG corresponding t@ and y distinguishes between the different eigenstates
with energyE (and may be chosen to correspond to irreducible representations of
subgroups of3). The energy eigenvalues of the Hamiltonian in Eqg. (19) thus depend
onlyonl

HICy) =E(M)|Ty) . (20)

The generatorgj do not admix states with differefts.
Let's now consider the chain of algebras

0100, (21)

which will lead to the introduction of the concept dfnamical symmetryHereg, is
a subalgebra o1, g2 C g1, i.e. its generators form a subset of the generatorg;of
and close under commutation. df is a symmetry algebra fdf, its eigenstates can
be labeled asl"1y1). Sinceg, C g1, g> must also be a symmetry algebra férand,
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consequently, its eigenstates labeledligs,). Combination of the two properties leads
to the eigenequation

HIF1l2ye) = E(T1)[M1lM2ys) , (22)

where the role of is played byl 2y and hence the eigenvalues depend only eriThis
process may be continued when there are further subalgebras, thabigp > g3 D - -+,
in which casep is substituted by 3)5, and so on.
In many physical applications the original assumption thas a symmetry algebra

of the Hamiltonian is found to be too strong and must be relaxed, that is, one is led to
consider the breaking of this symmetry. An elegant way to do so is by considering a
Hamiltonian of the form R .

H' = a-(gll(gl) + b(ﬁz(g2) ’ (23)

Where%]i (gi) is a Casimir invariant ofj. Since[H’,§] = 0 for §; € gp, H' is invariant
undergp, but not anymore undeg; becausg%i,(92),Gi] # 0 for §i & go. The new
symmetry algebrés thusg, while g; now plays the role oflynamical algebrdor the
system, as long as all states we wish to describe are those originally associated with
E(l1). The extent of the symmetry breaking depends on the tate Furthermore,
sinceH’ is given as a combination of Casimir operators, its eigenvalues can be obtained
in closed form
H'[T1M2y) = (@B, (T1) + b6, (o)) [F1l2)) - (24)

The kind of symmetry breaking caused by interactions of the form (23) is known
as dynamical-symmetry breakingnd the remaining symmetry is calleddgnamical
symmetryof the HamiltonianH’. From Eq. (24) one concludes that everHif is not
invariant undeq, its eigenstates are the same as thos¢ mfEq. (22). The dynamical-
symmetry breaking thus splits but does not admix the eigenstates.

In the last part of these lecture notes, we discuss some applications of the algebraic
approach in nuclear and particle physics. The algebraic approach, both in the sense we
have defined here and in its generalizations to other fields of research, has become an
important tool in the search for a unified description of physical phenomena.

ISOSPIN SYMMETRY

Some of these ideas can be illustrated with well-known examples. In 1932 Heisenberg
considered the occurrence of isospin multiplets in nuclei [16]. To a good approximation,
the strong interaction between nucleons does not distinguish between protons and neu-
trons. In the isospin formalism, the proton and neutron are treated as one and the same
particle: the nucleon with isospin= % The isospin projectionsy = +% and—% are
identified with the proton and the neutron, respectively. The total isospin of the nucleus
is denoted byl and its projection byr. In the notation used above (without making

the distinction between algebras and grouf@)is in this case the isospin gro@r (2)
generated by the operatorg Ty, andT, which satisfy commutation relations of Eq. (13),
andG; can be identified witf8Cr (2) generated byi;). An isospin-invariant Hamilto-

nian commutes witfy, Ty, andT,, and hence the eigenstat@ivir) with fixed T and
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FIGURE 2. Binding energies of th& = 3/2 isobaric analog states with angular momentum
and parityd™ = 1/2~ in 1B, 13C, 13N, and*30 [4]. The column on the left is obtained for an
exactSUr (2) symmetrywhich predicts states with differeMy to be degenerate. The middle
column is obtained in the case of &r(2) dynamical symmetryEq. (25) with parameters
a=280.59,b=—296, andc = —0.26 MeV.

Mr =-T,-T+1,...,T are degenerate in energy. However, the electromagnetic inter-
action breaks isospin invariance due to difference in electric charge of the proton and the
neutron, and lifts the degeneracy of the stafelsty). It is assumed that this symmetry
breaking occurs dynamically, and since the Coulomb force has a two-body character,
the breaking terms are at most quadratid@jfjl2]. The energies of the corresponding
nuclear states with the sarfieare then given by

E(Mr)=a+bMr+cM?, (25)

and SUr(2) becomes the dynamical symmetry for the system wBi@ (2) is the
symmetry algebra. The dynamical symmetry breaking thus implied that the eigenstates
of the nuclear Hamiltonian have well-defined value§ aindMy. Extensive tests have
shown that indeed this is the case to a good approximation, at least at low excitation
energies and in light nuclei [17]. Eq. (25) can be tested in a number of cases. In Fig. 2 a
T = 3/2 multiplet consisting of states in the nucléB, 13C, 13N, and'30 is compared

with the theoretical prediction of Eq. (25).

FLAVOR SYMMETRY

A less trivial example of dynamical-symmetry breaking is provided by the Gell-Mann—
Okubo mass-splitting formula for elementary particles [18, 19]. In the previous example,
we saw that the near equality of the neutron and proton masses suggested the existence
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FIGURE 3. Mass spectrum of the ground state baryon octet [4]. The column on the left is
obtained for an exacBU(3) symmetry, which predicts all masses to be the same, while the
next two columns represent successive breakings of this symmetry in a dynamical manner.
The column undeB0Cr (2) is obtained with Eq. (29) with parameteas= 11113, b = —1896,
d=-399,e=-3.8, andf = 0.9 MeV.

of isospin multiplets which was later confirmed at higher energies for other particles.
Gell-Mann and Ne’eman proposed independently a dynamical algebra to further classify
and order these different isospin multiplets of hadrons in tern®¢8) representations

[20] . Baryons were found to occur in decuplets, octets and singlets, whereas mesons
appear only in octets and singlets. The members 8U&) multiplet are labeled by

their isospinT, Mt and hypercharg¥ quantum numbers, according to the group chain

SUB) D Uy(l) ® SUr(2) D Uy(l) ® SOr(2)
i ! ! i) (26)
(A1) Y T Mr

If one would assum&U(3) invariance, all particles in a multiplet would have the same
mass, but since the experimental masses of other baryons differ from the nucleon masses

by hundreds of MeV, th&U(3) symmetry clearly must be broken.

Dynamical symmetry breaking allows the baryon states to still be classified by
Eqg. (26). Following the procedure outlined above and keeping up to quadratic terms,
one finds a mass operator of the form

M = a+ bCélUy(l) + CCéZLZUy(l) + dcéZSUr(Z)
+€%150r(2) + T Clsor2) + 27

with eigenvalues
M(Y,T,Mr) = a+bY4+cY?+dT(T+1)
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+eMr+fM2. (28)

A further assumption regarding tH&lJ(3) tensor character of the strong interaction
[18, 19] leads to a relation between the coefficiemémdd in Eq. (28),c = —d/4

M'(Y,T,Mr) = a+bY+d [T(T +1)— %YZ}
+eMr + fM2 (29)

If one neglects the isospin breaking due to the last two terms, one recovers the Gell-
Mann-Okubo mass formula. In Fig. 3 this process of successive dynamical-symmetry
breaking is illustrated with the octet representation containing the neutron and the proton
and theA\, %, and= baryons.

NUCLEAR SUPERSYMMETRY

Nuclear supersymmetry (n-SUSY) is a composite-particle phenomenon, linking the
properties of bosonic and fermionic systems, framed in the context of the Interacting
Boson Model of nuclear structure [21]. Composite particles, such ag-fheticle are

known to behave as approximate bosons. As He atoms they become superfluid at low
temperatures, an under certain conditions can also form Bose-Einstein condensates.
At higher densities (or temperatures) the constituent fermions begin to be felt and
the Pauli principle sets in. Odd-particle composite systems, on the other hand, behave
as approximate fermions, which in the case of the Interacting Boson-Fermion Model
are treated as a combination of bosons and an (ideal) fermion [22]. In contrast to the
theoretical construct of supersymmetric particle physics, where SUSY is postulated as a
generalization of the Lorentz-Poincare invariance at a fundamental level, experimental
evidence has been found for n-SUSY [23, 24, 25, 26, 27, 28, 29] as we shall discuss
below. Nuclear supersymmetry should not be confused with fundamental SUSY, which
predicts the existence of supersymmetric particles, such as the photino and the selectron
for which, up to now, no evidence has been found. If such particles exist, however, SUSY
must be strongly broken, since large mass differences must exist among superpartners,
or otherwise they would have been already detected. Nuclear supersymmetry, on the
other hand, is a theory that establishes precise links among the spectroscopic properties
of certain neighboring nuclei. Even-even and odd-odd nuclei are composite bosonic
systems, while oddk nuclei are fermionic. It is in this context that n-SUSY provides

a theoretical framework where bosonic and fermionic systems are treated as members of
the same supermultiplet [25]. Nuclear supersymmetry treats the excitation spectra and
transition intensities of the different nuclei as arising from a single Hamiltonian and a
single set of transition operators. Nuclear supersymmetry was originally postulated as a
symmetry among pairs of nuclei [23, 24, 25], and was subsequently extended to quartets
of nuclei, where odd-odd nuclei could be incorporated in a natural way [30]. Evidence
for the existence of N-SUSY (albeit possibly significantly broken) grew over the years,
specially for the quartet of nuclé?*Pt, 1°°Au, 195Pt and®®Au, but only recently more
systematic evidence was found [27, 28, 29].
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We first present a pedagogic review of dynamical (super)symmetries in even- and
odd-mass nuclei, which is based in part on [26]. Next we discuss the generalization of
these concepts to include the neutron-proton degree of freedom.

Dynamical symmetries in even-even nuclei

Dynamical supersymmetries were introduced in nuclear physics in 1980 by Franco
lachello in the context of the Interacting Boson Model (IBM) and its extensions [23].
The spectroscopy of atomic nuclei is characterized by the interplay between collective
(bosonic) and single-particle (fermionic) degrees of freedom.

The IBM describes collective excitations in even-even nuclei in terms of a system of
interacting monopole and quadrupole bosons with angular momentu@2 [21]. The
bosons are associated with the number of correlated proton and neutron pairs, and hence
the number of bosoni is half the number of valence nucleons. Since it is convenient
to express the Hamiltonian and other operators of interest in second quantized form, we
introduce creations’ anddj,, and annihilations and dm, operators, which altogether
can be denoted bbiT andb; withi=I1 m(l=0,2and—-I <m<|I). The operatori;)iT
andb; satisfy the commutation relations

[bi.bf] = &, [b,b]] = [bi.bj] = 0. (30)
The bilinear products
Bj = bibj, (31)

generate the algebra 0f(6) the unitary group in 6 dimensions
[Bij,Bu] = Bil Ok —Bx;jdi - (32)

We want to construct states and operators that transform according to irreducible repre-
sentations of the rotation group (since the problem is rotationally invariant). The creation
operatorsbiT transform by definition as irreducible tensors under rotation. However, the
annihilation operatori; do not. Itis an easy exercise to contruct operators that do trans-
form appropriately

bim = (=)™ (33)
The 36 generators of Eq. (31) can be rewritten in angular-momentum-coupled form as
(BB =3 L mt, T |A, ) bl By (34)
mmi

The one- and two-body Hamiltonian can be expressed in terms of the generaiq® of
as

— \ (A) T2 A (pfE V(A
H = ZS'%b'mb'm+;.l|§3.4u'l'2'3'4 [(b|1b|2)< ) (b by,) >+h.c.}. (35)
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In general, the Hamiltonian has to be diagonalized numerically to obtain the energy
eigenvalues and wave functions. There exist, however, special situations in which the
eigenvalues can be obtained in closed, analytic form. These special solutions provide
a framework in which energy spectra and other nuclear properties (such as quadrupole
transitions and moments) can be interpreted in a qualitative way. These situations corre-
spond to dynamical symmetries of the Hamiltonian [21].

The concept of dynamical symmetry has been shown to be a very useful tool in
different branches of physics. A well-known example in nuclear physics is the Elliott
SU(3) model [31] to describe the properties of light nuclei in theshell. Another
example is theSU(3) flavor symmetry of Gell-Mann and Ne’eman [20] to classify
the baryons and mesons into flavor octets, decuplets and singlets and to describe their
masses with the Gell-Mann-Okubo mass formula, as described in the previous sections.

The group structure of the IBM Hamiltonian is that®f= U (6). Since nuclear states
have good angular momentum, the rotation group in three dimenSiof& should be
included in all subgroup chains &f[21]

U(5) > SO(5) > SQ3)
U®6) > { SuU3)>Ssq3) (36)
SQ(6) S SA5) © SO3)

The three dynamical symmetries which correspond to the group chains in Eq. (36) are
limiting cases of the IBM and are usually referred to asUl{g) (vibrator), theSU(3)
(axially symmetric rotor) and thBQ(6) (y-unstable rotor).

Here we consider a simplified form of the general expression of the IBM Hamiltonian
of Eq. (35) that contains the main features of collective motion in nuclei

H = efg—kQ(x) Qx), (37)

whereny counts the number of quadrupole bosons

Ay = v5(d'd) = dfdm, (38)
m

andQ is the quadrupole operator

Q(x) = (s'd+d'§® 4 x(d'd)@ . (39)
The three dynamical symmetries are recovered for different choices of the coefficients
€, k andy. Since the IBM Hamiltonian conserves the number of bosons and is invariant

under rotations, its eigenstates can be labeled by the total number of hdsorsthe
angular momenturh.
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The U(5) limit

In the absence of a quadrupole-quadrupole interaation O, the Hamiltonian of
Eq. (37) becomes proportional to the linear Casimir operatbr(8§

Hi = efg = e%uy(s) - (40)

In addition toN andL, the basis states can be labeled by the quantum nunmgers
and t, which characterize the irreducible representationd &) andSQ(5). Hereng
represents the number of quadrupole bosonsraihé boson seniority. The eigenvalues
of Hy are given by the expectation value of the Casimir operator

E1 =¢eng. (41)

In this case, the energy spectrum is characterized by a series of multiplets, labeled by
the number of quadrupole bosons, at a constant energy spacing which is typical for a
vibrational nucleus (see Fig. 4).

3 ==6,4,3,2,0

2_
E (MeV)

2 == 4,2,0
1 F

1 —2

U(s)

Oor 0 —0

FIGURE 4. Schematic energy spectrum of an even-even nucleus Wi#) symmetry and
N = 3. The number of quadrupole bosamsis shown on the left and the angular momentum
belonging to each oscillator multiplet on the right.

The SU3) limit

For the quadrupole-quadrupole interaction, we can distinguish two situations in which
the eigenvalue problem can be solved analytically. ¥ /7/2, the Hamiltonian has
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a SU(3) dynamical symmetry
R . 1 7 3 .
Ho = —kQ(FV7/2)-Q(FV7/2) = —5K [szsws)—chzsqs)} : (42)

In this case, the eigenstates can be labele@by) which characterize the irreducible
representations &U(3). The eigenvalues are

E = —%K A +3)+u(u+3)+)\u—‘§1L(L+l)} . (43)

The energy spectrum is characterized by a series of bands, in which the energy spacing
is proportional toL(L + 1), as in the rigid rotor model. The ground state band has
(A, 1) = (2N,0) and the first excited ban(2N — 4,2) corresponds to a degenerdte

andy band (see Fig. 5). The sign of the coefficignis related to a prolate (-) or an
oblate (+) deformation.

—0
1.0 + (0,0)
—4
E (MeV) — 3
—2—2
0.5 | (2,2)
— 4
—2
00 —0 SUR)
(6,0)

FIGURE 5. Schematic energy spectrum of an even-even nucleus SUf8) symmetry and
N = 3. The quantum numbe(a, 1) are shown below each band and the angular momehtum
of each state on the right.
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The S@6) limit
For x = 0, the Hamiltonian has 8Q(6) dynamical symmetry
Hs = —kQ(0)-Q(0) = —k {(ézso(e) —Cézso(s)] . (44)

The basis states are labeleddgndt which characterize the irreducible representations
of SO(6) andSQ(5), respectively. Characteristic features of the energy spectrum

Es = —k[o(oc+4)—1(1+3)] , (45)
are the repeating patterhs= 0,2,4,2 which is typical of they-unstable rotor (see
Fig. 6).

1,00—2
LS T (3,00 = 6.4.3.0
E (MeV) 0,00—0
(1,0,0)
1.0 -
(2,0) == 4.2
0.5 r
(1,0)0— 2
00} (0,00— 0 SO(6)
(3,0,0)

FIGURE 6. Schematic energy spectrum of an even-even nucleus $@6) symmetry and

N = 3. The quantum numbel®;, 02, 03) = (0,0,0) are shown below each band, the boson
seniority (11, T2) = (7,0) is shown on the left and the angular momentutmelonging to eachr
multiplet on the right.

For other choices of the coefficients, the Hamiltonian of Eq. (37) describes situa-
tions in between any of the dynamical symmetries which correspond to transitional re-
gions, e.g. the Pt-Os isotopes exhibit a transition betwegnmstable and a rigid rotor
SQ6) « SU(3), the Sm isotopes between vibrational and rotational nugdié) —
SU(3), and the Ru isotopes between vibrational gadnstable nucleU (5) — SQ(6)

[21].
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Dynamical symmetries in odd-even nuclei

For odd-mass nuclei the IBM has been extended to include single-particle degrees
of freedom [22]. The Interacting Boson-Fermion Model (IBFM) has as its building
blocks a set oN bosons withl = 0,2 and an odd nucleokl = 1 (either a proton or
a neutron) occupuying the single-particle orbits with angular momentajy, jo,. . ..

The components of the fermion angular momenta spa@thdéenensional space of the
groupU (Q) with Q = 5(2j +1).

One introduces, in addition to the boson crealtiﬁrand annihilatiorb; operators for

the collective degrees of freedom, fermion creaﬁérand annihilatiora,, operators for
the single-particle. The fermion operators satisfy anti-commutation relations

{ay,al} = v, {al,al} = {ag,a} = 0. (46)
By construction, the fermion operators commute with the boson operators. The bilinear
products
AIJV - aLaV 5 (47)
generate the algebra bf(Q), the unitary group i dimensions
[Auv,Apa] = Aua vp —Apv Oyo - (48)

For the mixed system of boson and fermion degrees of freedom we introduce angular-
momentum-coupled generators as

B (1) = (bfBr)
AVG) = (@ap (49)

wheredjm is defined to be a spherical tensor operator
&jm = (=) "Maj-m. (50)

The most general one- and two-body rotational invariant Hamiltonian of the IBFM can
be written as
H = Hg+HF +VBE, (51)

whereHg is the IBM Hamiltonian of Eq. (35)F is the fermion Hamiltonian
T t &
HF = Zn]zajmalm+z Z V11J2]3J4 [(ajlaJZ)( ) (aj3aj4)<A>+h'C'} ) (52)
A l1)2]3ia
andVgg the boson-fermion interaction
A ~
VBF = Z Z W|(1|2)1112 [(bT b|2)( ). (a}rlajz)()\hrh'cl : (53)
A lil2)1j2

The IBFM Hamiltonian has an interesting algebraic structure, that suggests the pos-
sible occurrence of dynamical symmetries in ddlduclei. Since in the IBFM odd:
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nuclei are described in terms of a mixed system of interacting bosons and fermions,

the concept of dynamical symmetries has to be generalized. Under the restriction, that
both the boson and fermion states have good angular momentum, the respective group
chains should contain the rotation grol(3) for bosons an&U(2) for fermions) as

a subgroup

UB®6) o.--o SA(3)
UF(Q) o---2 SUF(2)

where we have introduced superscripts to distinguish between boson and fermion
groups. If one of subgroups &f8(6) is isomorphic to one of the subgroupsf (Q),

the boson and fermion group chains can be combined into a common boson-fermion
group chain. When the Hamiltonian is written in terms of Casimir invariants of the com-
bined boson-fermion group chain, a dynamical boson-fermion symmetry arises.

(54)

The Spir6) limit

Among the many different possibilities, we consider two dynamical boson-fermion
symmetries associated with tB€)(6) limit of the IBM. The first example discussed in
the literature [23, 32] is the case of bosons WHf(6) symmetry and the odd nucleon
occupying a single-particle orbit with spin= 3/2. The relevant group chains are

UB6) > sA®) > SA() > SAE(3)
UF4) o sSUF4) o Sg(4) > SU (2

Since SQ(6) and SU(4) are isomorphic, the boson and fermion group chains can be
combined into

(55)

UB6)@UF(4) > SCF(6)®SU"(4)
> Spin6) > Spin5) O Spin3) . (56)

The spinor group$pinn) are the universal covering groups of the orthogonal groups
SQ(n), with Spin6) ~ SU(4), Spin5) ~ Sp4) andSpin(3) ~ SU(2). The generators

of the spinor groups consist of the sum of a boson and a fermion part. For example, for
the quadrupole operator we have

Q = (s'"d+d'9? + (al ,82)? . (57)

We consider a simple guadrupole-quadrupole interaction which, just as f@Qfte
limit of the IBM, can be written as the difference of two Casimir invariants

Hi = -kQ-Q = —«k [CéZSpir(G)*céZSpir(S)} : (58)
The basis states are classified(by, 02, 03), (11, T2) andJ which label the irreducible

representations of the spinor grougin(6), Spin(5) andSpin(3). The energy spectrum
is obtained from the expectation value of the Casimir invariants of the spinor groups

Er = —K[01(01+4) + 02(02+2) + 05 — To(T1+3) — To(T2+ 1)] . (59)
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FIGURE 7. Schematic energy spectrum of an odd-even nucleus 3yiin/6) symmetry with

N =2 andM = 1. The quantum numbel®, 02, 03) are shown below each band, the labels
(11, T2) are shown on the left and the angular momentubelonging to eaclity, T2) multiplet

on the right.

The energy spectrum is characterized by a series of bands labeleg, by, 03), whose
rotational energies depend on the value$mf 1) (see Fig. 7).

The mass region of the Os-Ir-Pt-Au nuclei, where the even-even Pt nuclei are well
described by thesQ6) limit of the IBM and the odd proton mainly occupies the
2ds) shell, provide experimental examples of this symmery,' 91193 and19319°Au
[23, 32]. Fig. 8 shows the spectrum of the positive parity levels of the nué¢irsas
an example of th&pin(6) limit.

The U(6) ® SU(2) limit

The concept of dynamical boson-fermion symmetries is not restricted to cases in
which the odd nucleon occupies a singl®rbit. The first example of a mulij-case
discussed in the literature [25] is that of a dynamical boson-fermion symmetry associated
with the SQ(6) limit and the odd nucleon occupying single-particle orbits with spin
j=1/2,3/2,5/2. Inthis case, the fermion space is decomposed into a pseudo-orbital part
with k = 0,2 and a pseudo-spin part wigh= 1/2 corresponding to the group reduction

UF(B)aUuUf(2)
UF(12 U () oUF(2) 5 { SUF(3)aUF(2) (60)

ST (6)®UF(2)
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FIGURE 8. Example of an odd-even nucleus wilpin(6) symmetry [32].

Since the pseudo-orbital angular momentinhas the same values as the angular
momentum of the- andd- bosons of the IBM, it is clear that the pseudo-orbital part can
be combined with all three dynamical symmetries of the IBM

UB(5)
UB6) > { SUB®3) . (61)
SCP(6)

into a dynamical boson-fermion symmetry. The case, in which the bosonsSIG46g
symmetry is of particular interest, since the negative parity states in Pt with the odd
neutron occupying the 3 », 3pz/2 and 35/, orbits have been suggested as possible
experimental examples of a muitiboson-fermion symmetry. In this case, the relevant
boson-fermion group chain is

UB6)@U"(12) UBB)oUF () aUf(2)
UF(e) @ U (2)
S (6)aUF(2)
S (5 aUF(2)
SC*F(3) @ SUF(2)

Spin3) . (62)

Just as in the first example for the spinor groups, the generators of the boson-fermion
groups consist of the sum of a boson and a fermion pagtthe quadrupole operator is

Uy u uuuu
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now written as
. - 4 ~ ~
Q = (s'd+d'9@+ \/; (al 82— a] ,832)?

6 N -
+\/; (a-j—;/gal/z + 31/235/2)(2) : (63)

Also in this case, the quadrupole-quadrupole interaction can be written as the difference
of two Casimir invariants

Hp = —kQ-Q = —«k {%AzscﬁF(e)—(ézs(ﬁF(s)} ~ (64)

The basis states are classified [bly,Ny|, (01,02, 03), (11, T2) andL which label the
irreducible representations of the boson-fermion grouBs(6), SGF(6), SG*F(5)

and SCPF(3), respectively. The total angular momentum is givenJby: L +8 The
corresponding energy formula has the same form as for the previous case

E; = —K [01(01+4)+02(02+2)+032—T1(11+3)—Tz(rz—i-l)] . (65)

However, the allowed values of the quantum numbers are different. Fig. 9 shows a typical
spectrum in théJ (6) ® U (2) limit. The spectrum consists of a series of bands labeled
by [N1,N2], (01, 02, 03).

(1,00 — 2 (1,00 — 2
IS T o= 6430 QH= 54321
E (MeV) 0,00— 0  (2,0)=— 4,2 0,00— 0
[3,01,(1,0,0) [2,11,(1,0,0)
LO | (1,1)=—= 3,1
(2,0) = 4.2 (1,00 — 2
[2,1],(2,1,0)
05 |
(1,00— 2
00 F (0,00—0 U(6) ® U(Q2)
13,01, (3,0,0)

FIGURE 9. Schematic energy spectrum of an odd-even nucleus W) @ U (2) symmetry
for N =2 andM = 1. The quantum numbefbl;,Ny], (o1, 02, 03) are shown below each band,
the labels(11, 72) are shown on the left and the angular momentubelonging to eaclity, 12)
multiplet on the right. All levels are doublets with= Li% with the exception oL = 0 for

whichJ = £ only.
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FIGURE 10. Example of an odd-even nucleus with{6) © U (2) symmetry.

The mass region of the Os-Ir-Pt-Au nuclei, where the even-even Pt nuclei are well
described by thesQ(6) limit of the IBM and the odd neutron mainly occupies the
negative parity orbits B;/», 3ps/> and 35/, provides experimental examples of this
symmetry, in particular the negative parity levels'&#Pt are very well described by the
U (6) @ U (2) limit of the IBFM [25, 28, 33, 34].

Dynamical symmetries in odd-odd nuclei

For odd-odd nuclei the IBM has to be extended to include the single-particle degrees
of freedom of both an odd proton and an odd neutron. The ensuing Interacting Boson-
Fermion-Fermion Model (IBFFM) has as its building blocks a seNdbosons with
| = 0,2, an odd proton and an odd neutron, both of which can occupy a certain number
of single-particle orbits. The components of the fermion angular momenta span the
QuQnr-dimensional space of the group(Qy) @ U (Qr) with Q, = 3, (2jy +1) and

The most general one- and two-body rotational invariant Hamiltonian of the IBFFM
can be written as

H = Hg+Hr, + Hr, + VF,F, + VBFR, + VBF, (66)

whereHg is the IBM Hamiltonian of Eq. (35), andlr, and Hr,, denote the fermion
Hamiltonian of Eq. (52) for the odd neutron and proton, respectivg{y:. represents
the interaction between the odd proton and the odd neutron

Ver =Y Y XA [(aJr &) (a]r &) )+hc] . (67)

o J1J2]3)a J1
A J1)2)3)a
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Finally, Ver, andVgrg, denote the boson-fermion interaction of Eq. (53) for the interac-
tion between the even-even core and the odd neutron and proton, respectively.

Also the IBFFM Hamiltonian has dynamical symmetries in which the eigenvalue
problem can be solved in closed analytic form. Here we study a special case that is
a combination of th&8Q(6) limit in even-even nuclei, th&pin6) limit in odd-proton
nuclei, and th&J (6) @ U (2) limit in odd-neutron nuclei. The relevant group chains are

UB(6) > SO(6)
Uh12) o> URe) @ UR(©2) > sdve) o U2 (68)
Ufr(4) > SUFr(4)

There are many different ways to couple the three group chains, but the coupling scheme
that is most relevant in describing the spectra of complex nuclei is the one in which first
the odd neutron is coupled to the boson core at the levél @) as in Eq. (62), and

next the odd-proton is coupled at the level®®(6) ~ SU(4) ~ Spin6) as in Eq. (56)

to obtain the following group chain

UB6) © UM(12eufr(4)
> UBE)auRv(6)oUR(2)ouf(4)

Ut (e )®UFV(2>®UF"( )

SO (6) U™
Splr(6)®UF"( )
Spin5) @U™(2)
Spin3) @ SU™(2)
> SU2). (69)

(2) @ SU(4)

uy u uuu

Again, let's consider a quadrupole-quadrupole interaction. The quadrupole operator is
now the sum of a collective part and a single-particle part for the odd proton and the odd
neutron

Q = ('d+d'§?+(a] ,82)7
4 - . 6 N -
+ \/; (a;/zal/z - aI/2a3/2)$,2> + \/; (ag/zal/z + 31/235/2)5»2) . (70)

Just as in the previous examples the quadrupole-quadrupole interaction can be written
as the difference of two Casimir invariants

H=-kQQ=—«k [‘fzsmr(e)—‘ézspir@] ; (71)
and the corresponding energy eigenvalues are again given by
E = —k|[01(01+4)+ 02(02+2) + 05 — T4 (11 +3) — T2(T2+ 1)] . (72)

The basis states are classified i, No], (21,22,23), (01,02,03), (T1,T2), J and
L which label the irreducible representations of the boson-fermion groif{s(6)
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FIGURE 11. Schematic energy spectrum of an odd-odd nucleus ®fin6) symmetry for
N =1 andM, = My = 1. The quantum numbeidl;, Ny], (01,02, 03) are shown below each
band, the label$t,, T2) are shown on the left and the angular momentubelonging to each
(11, T2) multiplet on the right. All levels are doublets with=J+ %

SCPM(6), Spin6), Spin5), Spin(3) andSU(2), respectively. In this case, the total an-
gular momentum is denoted ly= J+ 5 (L is integer and half-integer). The spectrum
is characterized by a sequence of bands labelddb¥s], (01, 02, 03) (see Fig. 11).

The mass region of the Os-Ir-Pt-Au nuclei, where the even-even Pt nuclei are well
described by thesQ(6) limit of the IBM and the odd neutron mainly occupies the
negative parity orbits 8; />, 3ps/2 and s> (see Fig. 10) and the odd proton the positive
parity orbit 23/, (see Fig. 8) provides experimental examples of this symmetry, in

particular the odd-odd nuclé?®Au and%4r [29, 35]. In Fig. 12 we show the results for
1967,

196
o .
8 Theory , | 79AUs17]  Experiment
E 3
Yo | (5/2,1/2) 3, (5/2,1/2)
3 4
7 3- % 51 o
i (32, 1/2 % (312,172) ¢ 3-
(32,372) 3 w8 (3 N\ 9.
8- y 5 o 4.((30_)) ©)
1 @172 % + | i) EB 3
] 78 2- (1)
g (1) (3/2,1/2) ég <1}521:‘]‘<2511§> 253 1- 136/52 1/2)
& ] (121/2) == 1 (11212 —8 3
1 <112121z> <11/23/21/z>
o (1212 =—7% BlGP  [151> (112,112) —==;
A3 0
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FIGURE 12. Example of an odd-odd nucleus wiipin(6) symmetry [29].
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Dynamical supersymmetries

Boson-fermion symmetries can further be extended by introducing the concept of su-
persymmetries [24], in which states in both even-even and odd-even nuclei are treated
in a single framework. In the previous section, we have discussed the symmetry proper-
ties of a mixed system of boson and fermion degrees of freedom for a fixed number of
bosonsN and one fermiotM = 1. The operators;; andAy

Bj =b'bj, Aw =alay (73)
which generate the Lie algebra of the symmetry grolfi{6) @ U (Q) of the IBFM,
can only change bosons into bosons and fermions into fermions. The number of bosons
N and the number of fermiord are both conserved quantities. As explained in Section
2.6, in addition toBj; andA,,y, one can introduce operators that change a boson into a
fermion andvice versa

Fu=blay,, Gui=ajbi . (74)

The enlarged set of operatddg, Ay, Fiy, andGy; forms a closed (super)algebra which
consists of both commutation and anticommutation relations

[Bij,Ba] = Bidjk—Bxjdi .
[AuvaApo] = Auaévp*Apvéuoa
[Bij, Aw] = O,

Bij.Fu] = Fiudic,

[Gui,Bu] = Gud,

[Fiu:Aos] = Fiodyp

[Auwv,Gpi] = Gpidp ,

{FUMGVj} = Bijopv +Avudij,

{Fu.Fv} = 0,

{G“i,ij} = 0. (75)

This algebra can be identified with that of the graded Lie grldge/Q). It provides an
elegant scheme in which the IBM and IBFM can be unified into a single framework [24]

U(6/Q) >UBB)2uf(Q). (76)

In this supersymmetric framework, even-even and odd-mass nuclei form the members of
a supermultiplet which is characterized bif = N+ M, i.e. the total number of bosons

and fermions. Supersymmetry thus distinguishes itself from “normal” symmetries in
that it includes, in addition to transformations among fermions and among bosons, also
transformations that change a boson into a fermionvécelversgsee Table 1).
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TABLE 1. Overview of algebraic models.

Model Generators Invariant ~ Symmetry

IBM bb; N u(6)

IBFM b'bj , ala, N,M - U(6)aU(Q)
n-SUSY b'b;, ala,, bla,,albi u(6/Q)

U (6/4) supersymmetry

The Os-Ir-Pt-Au mass region provides ample experimental evidence for the occur-
rence of dynamical (super)symmetries in nuclei. The even-even nd¢iéePt are the
standard examples of tf#&Q(6) limit of the IBM [36] and the odd proton, in first ap-
proximation, occupies the single-particle levels2. In this special case, the boson and

fermion groups can be combined into spinor groups, and the odd-proton hici&ir
and'®31%°Au were suggested as examples of §@n(6) limit [23, 32]. The appropriate
extension to a supersymmetry is by means of the graded Lie d#¢64)
U(6/4) > UBB)aU"(4) > sA6)SUf(4)
D Spin(6) D Spin5) D Spin3) . (77)

A dynamical supersymmetry arises when the Hamiltonian is expressed in terms of the
Casimir invariants of the subgroupsf6/4)

Hi = —A%Gaspine) + B%aspints) + CCaspina) - (78)

The energy spectrum is given by the expectation value of the Casimir invariants of the
spinor groups

Er = —Aloi(o1+4)+0p(02+2) + 05
+B[r(114+3) + 12(12+ 1)] + CIJT+ 1), (79)
which simultaneously describes the spectra of both the even-even and the odd-even
nucleus with a single set of parameté&;B andC.
The pairs of nuclet®®0s -194r, 1920s - 199y, 192pt - 193ay and 194t - 195Au were

analyzed as examples of6/4) supersymmetry [24]. In Fig. 13, we show the results
for the pairt®0s -1°1r.

U (6/12) supersymmetry

Another example of a dynamical supersymmetry in this mass region is that of the Pt
nuclei. The even-even isotopes are well described b ®@) limit of the IBM and the
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FIGURE 13. Example of pair of nuclei withJ (6/4) supersymmetry [24].

odd neutron mainly occupies the negative parity orbipg;3, 3ps/, and 3fs,. In this
case, the graded Lie grouplg6,/12)

u(6/12) > UBB)oUF(12)

> UBB)aUF(B)@UR(2)
UBF(6)oUF(2)
SGF(6)aUf(2)
S5y aUf(2)
SAF(3) @ SUF(2)
Spin(3) . (80)

yu uuu

In this case, the Hamiltonian

HZ = qa Cg;u BF (6) + B CJ?ZSC’SF(G) + V(gAZSCﬁF (5)
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FIGURE 14. Example of a pair of nuclei with) (6/12) supersymmetry [28].

simultaneously describes the excitation spectra of both the even-even and the odd-even
nucleus with a single set of parametersf, y, d ande. . The energy spectrum is given
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+0Cas s (3) + € Caspir3) »

by the eigenvalues of the Casimir operators

E>

a [Nl(Nl + 5) + N2(N2 + 3)] +p [01(01 + 4) + 0'2(0'2 + 2) + 0'32,]

+y[r(t143) + (T2 + 1)+ 6L(L+1) +€II+1) .

The odd-neutron nucleu¥®Pt and the even-even nucled®Pt were studied as an

example of &J (6/12) supersymmetry (see Fig. 14) [25, 33, 34, 28].
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TABLE2. The number of bosons and fermions in a supersymmetric quar-

tet of nuclei.
Nucleus Ny Mgz Ny My Nucleus Ny Mgz N, My
P%Pte 2 0 5 0 2%0s6 3 0 5 0
®Phiy 2 0 4 1 Bosy; 3 0 4 1
BAuge 11 5 0 e 2 1 5 0
™Az, 101 4 1 By, 2 01 4 1

Dynamical neutron-proton supersymmetries

As we have seen in the previous section, the mass refjionl90 has been a rich
source of possible empirical evidence for the existence of (super)symmetries in nuclei.
The pairs of nuclet®0s -19%r, 1920g -193|r, 192pt - 1937 and 4Pt - 19°Au have been
analyzed as examples oll(6/4) supersymmetry [24], and the nucfE*Pt - 19Pt as
an example of &) (6/12) supersymmetry [25]. These ideas were later extended to the
case where neutron and proton bosons are distinguished [30], predicting in this way a
correlation among quartets of nuclei, consisting of an even-even, an odd-proton, an odd-
neutron and an odd-odd nucleus. The best experimental example of such a quartet with
?986/12)" ® U (6/4) 5 supersymmetry is provided by the nucléfPt, 19°Au, %Pt and

Au

The supersymmetric classification of nuclear levels in the Pt and Au isotopes has been
re-examined by taking advantage of the significant improvements in experimental capa-
bilities developed in the last decade. High resolution transfer experiments with protons
and polarized deuterons have strengthened the evidence for the existence of supersym-
metry in atomic nuclei. The experiments include high resolution transfer experiments to
196Ay at TU/LMU Miinchen [27, 28], and in-beam gamma ray and conversion electron
spectroscopy following the reactioh¥Pt(d, 2n) and'®Pt(p, n) at the cyclotrons of the
PSI and Bonn [29]. These studies have achieved an improved classification of states in
195pt and¥®Au which give further support to the original ideas [23, 25, 30] and extend
and refine previous experimental work in this research area.

The number of bosons and fermions are related to the number of valence nuickeons,
the number of protons and neutrons outside the closed shells. The relevant closed shells
areZ = 82 for protons andN = 126 for neutrons. For the even-even nuclé@f@tllﬁ the
number of bosons ad; = (82— 78)/2 =2 andN, = (126— 116)/2 = 5. There are
no unpaired nucleondl,; = M, = 0. For the odd-neutron nuclegg®Pt;17 there are 9
valence neutrons which leadsty = 4 neutron bosons and, = 1 unpaired neutron.

The 79Au isotopes have 3 valence protons which are divided difee= 1 proton boson
andMy = 1 unpaired proton. This supersymmetric quartet of nuclei is characterized by
Nqg=Npg+Mg=2 and.4, = Ny, + M, = 5. The number of bosons and fermions are
summarized in Table 2.
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The relevant subgroup chain &f(6/12), ® U(6/4)x for the neutron-proton (or
extended) supersymmetry is given by [30]

UB(6) U™ (12) @ UB(6) @ U (4)
UBB)oUM(6) UM (2)@Uf(4)

UBR(B) U™ (2) @ Ufr(4)

S (6) UM (2) ® SU(4)

Spin6) UM (2)

Spin5) U™ (2)

Spin(3) @ SU™(2)

SU(2) . (83)

U(6/12)y ®@U(6/4)n

yguuuuuuu

In this case, the Hamiltonian

H = aGuyen e+ B%sen e +YEaspins
+0 Caspins) + € Caspina) + 1 Casu(2) « (84)

describes simultaneously the excitation spectra of a quartet of nuclei consisting of an
even-even, an odd-proton, an odd-neutron and an odd-odd nucleus. The energy spectrum
is given by

E = a[Ny(Nz+5)+Na(No+3)+Na(N3+1)]
+B [Z1(Z1+4) +32(32+2) + 53]
+y [01(01+4) + 0202+ 2) + 0F]
+0 [T1(T1+ 3) + To(T2+ 1))
+eJI+1)+nL(L+1). (85)

Fig. 15 shows the results for the quartet of Pt and Au nuclei. The coeffigersy,

d, € andn were determined in a simultaneous fit of the excitation energies of the four
nuclei [29].

In dynamical (super)symmetries closed expressions can be derived for energies, as
well as selection rules and intensities for electromagnetic transitions and transfer re-
actions. Recent work in this area concerns a study of one- and two-nucleon transfer
reactions. As a consequence of the supersymmetry, explicit correlations were found be-
tween the spectroscopic factors of the one-proton reactions between n-SUSY partners
194pt 195 Ay and 195Pt 196 Au [37] which can be tested experimentally. The spec-
troscopic stengths of two-nucleon transfer reactions constitute a stringent test for two-
nucleon correlations in the nuclear wave functions. A study in the framework of nuclear
supersymmetry led to a set of closed analytic expressions for ratios of spectroscopic fac-
tors. Since these ratios are parameter independent they provide a direct test of the wave
functions. A comparison between the recently measb?%ﬂig(& ,a)*%6Au reaction [38]
and the predictions of the nuclear quartet supersymmetry [39] lends further support to
the validity of supersymmetry in nuclear physics.
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FIGURE 15. Example of a quartet of nuclei witt(6/12), @ U (6/4); supersymmetry [29].

Two-nucleon transfer reactions

Two-nucleon transfer reactions probe the structure of the final nucleus through the
exploration of two-nucleon correlations that may be present. The spectroscopic strengths
not only depend on the similarity between the states in the initial and final nucleus, but
also on the correlation of the transferred pair of nucleons.

In this section, the recent data on #98Pt(d, a)194r reaction [35] are compared with
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TABLE 3. Ratios of spectroscopic strengths fok o) re-
actionsR_(ee— 00) to final states with{ty, 7o) = (3, 3). N
is the number of bosons in the odd-odd nucleNs=(6 for
196PI—> 194|r)_

Ny, Nz]  (21,22,Z3)  (01,02,03) R
[N, 1] (N,1,0) (N+3.3.3) 1
N, 1] (N.1,0)  (N+3,3.—3) e
N-+4)(N+1)(N-1
N (N0 (N-33-8) SRisats ™
111 (N+1)(N-1)
(N, 1] (N,1,0) (N=3,3:3) TENT3) (N5
2N+4)(N+6
N+10 (N+100 (N+333) 2800
2N+4
N+1,0] (N+1,00) (N+11 -1 A

the predictions from the),,(6/12) ® Ur(6/4) supersymmetry. This reaction involves the
transfer of a proton-neutron pair, and hence measures the neutron-proton correlation in
the odd-odd nucleus. The spectroscopic strengths

2

Gy = , (86)

3 .

depend on the reaction mechanism via the coefficig!m§ and on the nuclear structure
part via the reduced matrix elements.

In order to compare with experimental data we calculate the relative streRgths
GL3 /G[S"f, WhereG[‘Jaf is the spectroscopic strength of the reference state. The ratios of
spectroscopic strengths to final states with 7o) = (%, %) provide a direct test of the
nuclear wave functions, since they can only be excited by a single tensor operator [39].
In Table 3 we show the ratios for different final states with 12) = (3, 3).

Fig. 16 shows the ratios of spectroscopic strengths of two-nucleon transfer reactions
R j compared with the theoretical predictions from nuclear supersymmetry. The ref-
erence states are easily identified, since they are normalized to one. The calculations
were carried out without the introduction of any new parameter since the coefficients
gJ-LVJjn appearing in the transfer operator of Eq. (86) were taken from the study of the

198Hg(d, a)1%Au reaction [39]. In general, there is good overall agreement between
the experimental and theoretical values, especially if we take into account the simple
form of the operator in the calculation of the two-nucleon transfer reaction intensities.
The deviations observed in th andF, transfers are most likely due to single-particle
configurations outside the model space. ForRheP;, andFs distributions the exper-
imental (:T, a) detection limits for weakly populatedQ 1—, and 3 states prevent a
better agreement.
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FIGURE 16. Comparison of theoretical (left panels) and experimental values (right panels) of
ratiosR_; of spectroscopic strengths.

The new data from the polarize(aiT,a) transfer reaction has provided crucial new
information about and insight into the structure of the spectrurt®8f which led to
significant changes in the assignment of levels as compared to previous work [40]. The
new assignment agrees with that of the neighboring odd-odd nuti&as [27, 29, 38].

Fig. 17 shows the negative parity levels B¥ir in comparison with the theoretical
spectrum in which it is assumed that these levels originate fronvemg », v3ps)»,
v2fs,, ® m2dz,, configuration. Given the complex nature of the spectrum of heavy
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FIGURE 17. Comparison between the theoretical and experimental spectrdfiof35].

odd-odd nuclei, the agreement is remarkable. There is an almost one-to-one correlation
between the experimental and theoretical level schemes [35].

The successful description of the odd-odd nuclé®f$r opens the possibility of
identifying a second quartet of nuclei in tife~ 190 mass region withJ (6/12), ®
U (6/4), supersymmetry. The new quartet consists of the ndéfdi®30s and!®31%4r
and is characterized by/;; = 3 and.#;, = 5 (see Table 2). Whereas th&0Os and
193194 nuclei are well-known experimentally, the available data ¥$1Os is rather
scarce. In Fig. 18 we show the predicted spectrum!?é®s obtained from Eq. (85)
using the same parameter set asffir [35]. The ground state of%3Os has spin and
parity J° = %7, which seems to imply that the second band with labél4], (7,1,0) is
the ground state band, rather th&n0], (8,0, 0). This ordering of bands is supported by
preliminary results from the one-neutron transfer reactt3@s(d, p)1%°0s [41].

An analysis of the energy spectra of the four nuclei that make up the quartet shows
that the parameter set obtained in 1981 for the P&©s1%3Ir [24] is very close to that
of 194r [35], which indicates that the nuclé?21930s and!%31%4r may be interpreted in
terms of a quartet of nuclei witl (6/12), ® U (6/4); supersymmetry.
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CORRELATIONS

The nuclei belonging to a supersymmetric quartet are described by a single Hamiltonian,
and hence the wave functions, transition and transfer rates are strongly correlated. As
an example of these correlations, we consider here the transfer reactions between the
194195pt and1921930s nuclei. The Pt and Os nuclei are connected by one-neutron
transfer reactions within the same supersymmetric quiet — 195Pt and'%20s

1930s, whereas the transitions between the Pt and Os nuclei involve the transfer of a
proton pair between different quartéfPt — 1920s and'%Pt — 19%0s.

Generalized F-spin

The correlations between different transfer reactions can be derived in an elegant and
explicit way by a generalization of the conceptFofspin which was introduced in the
neutron-proton IBM [42] in order to distinguish between proton and neutron bosons.

The eigenstates of thé(6/12), @ U (6/ gvn supersymmetry are characterized by the
irreducible representatiofis, No, Na] of UB™(6) which arise from the coupling of three
differentU (6) representationgN,] for the neutron boson$Ny] for the proton bosons
and[N,] for the pseudo-orbital angular momentum of the odd neuthg= O for the
even-even and odd-proton nucleus of the quartet Nye 1 for the odd-neutron and the
odd-odd nucleus). In analogy with the three quark flavors in the quark mogelgnd
9), also here we have three different types of identical objets (and p), which can
be distinguished b¥-spin and hyperchargé. The two kinds of bosons form df-spin
doublet,F = % with charge states, = £ for protons 1) andF, = —% for neutrons ¢)
[42]. In the framework of the generalizdespin, we assign in addition a hypercharge
guantum number to the bosols= % The pseudo-orbital parpj hasF = F, = 0 and
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Y = —2[43].
3
Group theoretically, the generaliz€dspin is defined by the reduction

Uuis o U@l ® U@
! i) ! (87)
[N] [Nz, N2, N3] [N1, N2, N3]

HereU (6) is to be identified with th&) B (6) of the group reduction of Eq. (83), which
is the result of first coupling the bosons at the levelid®) followed by coupling the
orbital part

| [NV]7 [N”]; [NV +Np—1i, i]’ [NP]; [Nl’ N2, N3]> . (88)

This sequence dfl (6) couplings can be described in a completely equivalent way by
the three-dimensional index groufy3) of Eq. (87) which can be reduced to

UB) D SUB) > [SU@) > Sa2)] ® U(1)

1 ! 1 1 1 (89)
[Nla NZ, N3} ()\ ; U) F F Y
The relation between the two sets of quantum numbers is given by
(A, ) = (NL—N2,No—Ng)

F - %(NH—FNV—Z') 5
1

F = 5 (Nr—Ny) ,
1

Y o= 3 (Nz+Ny —2Np) . (90)

As a result, matrix elements between states with the same quantum numbers but dif-
ferentU (6) couplings are then related I8U(3) isoscalar factors (or Clebsch-Gordan
coefficients forSU(3)), and hence correlations between different transfer reactions can
be derived in terms of these isoscalar factors by means of the concept of generalized
F-spin.

One-neutron transfer

In a study of the'**Pt — 195pt stripping reaction it was found [33] that one-neutron
j = 3/2, 5/2 transfer reactions can be described by the operator

. , - ()
Dt — 9 (s wat YV (G «at
P, = ﬁ l(s\, X av.j> —(dy x avé . (92)

It is convenient to take ratios of intensities, since they do not depend on the value
of the coefficienta; and hence provide a direct test of the wave functions. For the
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stripping reactiont®Pt — 1%5Pt (ee— on) the ratio of intensities for the excitation of
the (11, 72) = (1,0), L = 2 doublet withd = 3/2, 5/2 belonging to the first excited band
with [N+1,1], (N+1,1,0) relative to that of the ground state baji+ 2], (N +2,0,0)

is given by [33]

(N+1)(N+3)(N+6)
2(N+4) ’

R(ee— on) = (92)

which givesR = 29.3 for 194Pt — 195t (N = 5), to be compared to the experimental
value of 19.0 forj = 5/2, andR = 37.8 for 1920s— 1%30s (N = 6). The equivalent ratio
for the inverse pick-up reaction is given by

Ng+1

R(on— ee) = R(ee— on)m .

(93)

which givesR = 1.96 for 19°Pt — 194pPt (N, = 1 andN, = 4) andR = 3.24 for 19%0s —
1920s (N = 2 andN, = 4). This means that the mixed symmelry- 2 state is predicted
to be excited more strongly than the first excitee: 2 state.

This correlation between pick-up and stripping reactions has been derived in a general
way only using the symmetry relations that exist between the wave functions of the
even-even and odd-neutron nuclei of the supersymmetric quartet. The factor in the
right-hand side of Eq. (93) is the result of a ratio of t80(3) isoscalar factors. It is
important to emphasize, that Egs. (92) and (93) are parameter-independent predictions
which are a direct consequence of nuclear SUSY and which can be tested experimentally
by combining for exampléd, p) stripping and(p, d) pick-up reactions.

Two-proton transfer

The two supersymmetric quartets in the mass 190 region differ by two protons. In
principle, the connection between the two quartets can be studied by two-proton transfer

TABLE 4. Ratios of spectroscopic strengths for
two-proton transfer reactions between even-even
nuclei R(ee— e@ to final states with(11, 7o) =
(0,0). N is the number of bosons in the odd-odd
nucleus of the same quartet as the initial even-
even nucleusN = 5 for 194pt — 1920s),

no [N, N (22,22,29) Rn
1 [N+30 (N+3,0,0) 1
2 IN+30 (N+1,00)  H2ES

Ny +1)(N+1)(N+4
3 [N+21 (N+1,00) bt
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TABLE 5. Ratios of spectroscopic strengths for two-proton
transfer reactions between odd-neutron nug§{en— on) to

final states with(t1, 72) = (0,0). N is the number of bosons

in the odd-odd nucleus of the same quartet as the initial odd-
neutron nucleusN = 5 for 195pt — 1930s),

noIN+2-0i]  [NLNg  (31,%2,%3) S
1 [N+20 [N+3,0 (N+3,0,0) 1
2 [N+20 [N+3,0 (N+1,0,0) R
3a  [N+20 [N+21 (N+1,0,0 Rep 5wy
3 [N+11 [N+21 (N+100) Regeiss

reactions. In the IBM, two-proton transfer operator is, in first order, given by
Pl=asl, Pr=asy. (94)

Whereas the operatsy; only excites the ground state of the final nucledgpan also
populate excited states.

In Table 4, we show the results for ratios of spectroscopic strengths between even-
even nuclei. The selection rules of the operatprllow the excitation of states with
with (11, T2) = (0,0) andL = 0 belonging to the ground bard;,>,,¥3) = (N+3,0,0)
and excited bands witfN + 1, 0, 0). The corresponding ratios for the odd-neutron nuclei
are strongly correlated to those of the even-even nuclei (see Tables 4 and 5)

S(on—on) = Ry(ee— e,
N+ 2
S?,a(on — On) = R3(ee—> eam 5
Sp(on—on) = Rz(ee— e@% . (95)

As before, the coefficients in the right-hand side correspond to the ratio oSt8)
Clebsch-Gordan coefficients.

SUMMARY AND CONCLUSIONS

The concept of symmetry has played a very important role in physics, especially in the
20th century with the development of quantum mechanics and quantum field theory.
The applications involve among other geometric symmetries, permutation symmetries,
space-time symmetries, gauge symmetries and dynamical symmetries. In these lecture
notes, | have concentrated mainly on the latter. The basic idea of dynamical symmetries
is that of finding order, regularity and simple patterns in complex many-body systems.
The examples discussed in these notes include isospin and flavor symmetry and nuclear
supersymmetry.
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Dynamical symmetries not only provide classification schemes for finite quantal
systems and simple benchmarks against which the experimental data can be interpreted
in a clear and transparent manner, but also led to important predictions that have been
verified later experimentally, such as e baryon as the missing member of the baryon
decuplet, the nucleus§®Pt as an example of tr&Q(6) limit of the IBM and the odd-odd
nucleus!®®Au whose spectroscopic properties had been predicted as a consequence of
nuclear supersymmetry almost 15 years before they were measured.

In these lecture notes, | have reviewed the experimental evidence for the existence
of supersymmetric quartets of nuclei in tAe- 190 region withU (6/12), @ U (6/4)
supersymmetry, consisting of tA&4%195pt and195195Au nuclei, and thé9%1930s and
193194 nuclei, respectively. In addition, nuclear supersymmetry establishes precise
links among the spectroscopic properties of different nuclei. This relation has been used
to predict the energies df30s. Since the wave functions of the members of a super-
multiplet are connected by symmetry, there exists a high degree of correlation between
different one- and two-nucleon transfer reactions not only between nuclei belonging to
the same quartet, but also for nuclei from different multiplets. As an example, the cor-
relations between one-neutron transfer reactions and two-proton transfer reactions were
studied.

The interplay between theory and experiment is reflected in the combination of the
Platonic ideal of symmetry with the more down-to-earth Aristotelic ability to recognize
complex patterns in Nature.

FIGURE 19. Detail of “The School of Athens” (Plato on the left and Aristoteles on the right),
by Rafael.

128

Downloaded 17 Oct 2012 to 132.248.29.219. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



PREHISPANIC SUPERSYMMETRY

FIGURE 20. Prehispanic supersymmetry

Fig. 20 shows an artistic interpretation of supersymmetry in physics. This figure
is part of the design of the poster of theXXV Latin-American School of Physics.
Supersymmetries in Physics and its Applicati(fisAF 2004) by Renato Lemus which
is inspired by the concept of supersymmetry as used in nuclear and particle physics and
the ‘Juego de Pelota’, the ritual game of prehispanic cultures of Mexico. The four players
on the ballcourt are aztec gods which represent the nuclei of a supersymmetric quartet.
Each one of the gods represents a nucleus, on the topdefiatlipocathe even-even
nucleus'®*Pt, top rightQuetzalcoatlthe odd-even nucleus®Pt, bottom leftCamaxtle
the even-odd nucled$€®Au, and finallyHuitzilopochtli: the odd-odd nucleuS’°Au. The
association between the gods and the nuclei is made via the number and the color of the
balls that each one of the players carry. Each player carries 7 balls. The green and blue
balls correspond to the neutron and proton bosons, whereas the yellow and red ones
correspond to neutrons and protons, respectively. The one-nucleon transfer operators
that induce the supersymmetric transformation between different nuclei, are represented
by red coral snakes (‘coralillos’). The snakes that create a particle carry a ball in their
mouth whose color indicates the type of particle. On the other hand, the snakes that
annihilate a particle carry the corresponding ball soaking with blood that seems to split
their body. Both types of snakes we see in segmented form, in representation of the
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guantization of energy. In the world of the ancient Mexico both living and dead creatures
form a coherent unity and harmonize in the same plane of importance. This is reflected
in the eyes that are included in all components of a graphical representation. For this
reason, the balls associated with the creation and annihilation of particles have eyes.

The central figure in the ball court consists of two intertwined snakes, a coral snake
and a rattle snake. They represent another aspect of supersymmetry as it is used in
particle physics, in which each particle has its supersymmetric counterpart. The reason
that this is symbolized by snakes is their property to change skins. Thus, a change of
skin of two apparently different snakes suggests the transformation between bosons and
fermions. The same two snakes make their appearance on the circular stone rings, the
‘score board’ of the aztec ball game. In the ball court one finds, at the f@etzohtlipoca
the symbolOllin, movement, which represents the uncertainty principle. Similarly, we
see a heart in the upper right and the lower left part. The hearts have two meanings. On
the one hand they characterize the ritual aspect of the ancient game ‘Juego de Pelota’
and, on the other hand, they represent the ‘road with a heart’, which science could follow.
Finally, next toHuitzilopochtlithere is a skull to remind us of the fleeting nature of our
existence.

More information can be found in the proceedings of the ELAF 2004 [44].
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