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INTRODUCTION

• Quark model of Gell-Mann and Zweig:

q

q

q
q q

• Resonances: excitations of these quarks from the ground 
state to different high energy levels.



• This picture is too simple to describe the properties of  
all the hadrons found in Nature

N*(1440) Lowest excited state of the 
Nucleon observed

N*(1535) Lowest excited state of the Nucleon 
based on a three quark model
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• QCD is the theory for the strong interaction. 

Tested by the 
experiment.

Perturbative 
methods not 
applicable.

QCD

High 
energy 
regime

Low 
energies



• In the low energy region there is an interesting fact: 
isospin triplet with a mass much smaller than the rest 
of the QCD states.

• Extension to SU(3): lowest octect of pseudoscalar states 

(π, K, 𝜂).

Presence of a chiral symmetry in the light quark 
sector (u, d, s) which breaks down spontaneously

⇡,K, ⌘

⇢,!,�,K⇤

~1 GeV
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Fig. 4. At low energies the single W boson exchange reduces to a four-quark contact
interaction.

2.2 Weak Interactions at Very Low Energies

A second well-known example of an effective field theory is encountered in
weak interactions. Consider the amplitude for the flavor changing weak process
at lowest order from single W boson exchange

A =
(

ig√
2

)2

VusV
∗
ud

(
ūγµ 1−γ5

2 s
) (

d̄γν 1−γ5
2 u

)(
−igµν

p2 − M2
W

)
, (5)

where Vij are elements of the Kobayashi-Maskawa mixing matrix and the
W propagator is given in Feynman gauge. In the limit of small momentum
transfer, p2 # M2

W , the W propagator can be expanded in p2/M2
W such that

the amplitude is approximated by the local interaction

A =
i

M2
W

(
ig√
2

)2

VusV
∗
ud

(
ūγµ 1−γ5

2 s
) (

d̄γµ
1−γ5

2 u
)

+ O
(

p2

M4
W

)
. (6)

Diagrammatically this approximation is illustrated in Fig. 4, where the contact
interaction arises from the effective Lagrangian

Leff = −2
√

2GF VusV
∗
ud

(
ūγµ 1−γ5

2 s
) (

d̄γµ
1−γ5

2 u
)

(7)

with the Fermi constant GF = g2/
(
4
√

2M2
W

)
.

2.3 Chiral Symmetry in QCD

As mentioned above, the relevant symmetries of the underlying theory must
also be maintained by the effective field theory. In this section, we will study
the (approximate) chiral symmetry of QCD. The QCD Lagrangian reads in
compact notation

LQCD = q̄ (iγµDµ − mq) q − 1
2
Trc (GµνGµν) , (8)

where qT = (u, d, s, c, b, t) comprises the six quark flavors, Dµ = ∂µ − igGµ

is the covariant derivative, Gµ the gluon fields, and Gµν = ∂µGν − ∂νGµ −
ig [Gµ, Gν ] the gluon field strength tensor. Trc denotes the trace in color space.
The Dirac field q is a 72-component object; each of the 6 quark flavors appears
in 3 different colors and has 4 spinor components.

• QCD Lagrangian:
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Low energies                 c, b,t infinitely heavy

Massless quarks                 chiral limit

Introduction to Chiral Perturbation Theory 5

The quarks can be grouped into light and heavy flavors according to their
masses: the u, d, s quarks are substantially lighter than the c, b, t quarks [9].
Hence, the limit of massless light quarks, mu = md = ms = 0, the so-called
chiral limit, seems to be a reasonable approximation and can be improved by
treating the light quark masses as perturbations. The c, b, t quarks, on the
other hand, can be treated at low energies as infinitely heavy and the only
active degrees of freedom are those associated with the light u, d, s quarks.

It is straightforward to see that in the chiral limit the QCD Lagrangian
has an extra symmetry. In this limit, the relevant part of LQCD is (we use the
same notation for simplicity)

LQCD =
∑

q=u,d,s

q̄iγµDµq − 1
2
Trc(GµνGµν) . (9)

Here, q represents a one-flavor quark field. By introducing right- and left-
handed quark fields

qR/L =
1
2
(1 ± γ5) q (10)

one arrives at

LQCD =
∑

q=u,d,s

(q̄LiγµDµqL + q̄RiγµDµqR) − 1
2
Trc(GµνGµν) . (11)

Independent transformations of the right- and left-handed quark fields

qR → R qR , qL → LqL (12)

with R ∈ SU(3)R, L ∈ SU(3)L leave the massless QCD Lagrangian invariant.
This invariance is referred to as SU(3)L×SU(3)R chiral symmetry of massless
QCD. One observes that the gluon interactions do not change the helicity of
quarks but the quark mass term does.

Due to Noether’s theorem an immediate consequence of a continuous
symmetry of a Lagrangian is the existence of a conserved current Jµ with
∂µJµ = 0. The corresponding charge

Q(t) =
∫

d3x J0(t,x) (13)

is time-independent, i.e. dQ/dt = 0. Familiar examples are the invariance of
the Lagrangian with regard to translations in time and space and rotations
which imply, respectively, conservation of energy, momentum and angular
momentum. At the operator level, the conserved charges commute with the
Hamiltonian.

In the chiral limit of QCD the conserved currents of chiral symmetry are

La
µ =

∑

q=u,d,s

q̄Lγµ
λa

2
qL , Ra

µ =
∑

q=u,d,s

q̄Rγµ
λa

2
qR (14)
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with the Gell-Mann matrices λa. The invariant charges Qa
L, Qa

R generate the
algebra of SU(3)L and SU(3)R, respectively. It is useful to define the combi-
nations

Qa
V = Qa

R + Qa
L ; Qa

A = Qa
R − Qa

L (15)

which have a different behavior under parity

Qa
V → Qa

V ; Qa
A → −Qa

A . (16)

Consider an eigenstate |ψ〉 of HQCD (in the chiral limit)

HQCD|ψ〉 = E|ψ〉 . (17)

The states Qa
V |ψ〉 and Qa

A|ψ〉 have the same energy E but opposite parity.
Thus for each positive parity state there should be a negative parity state with
equal mass. This pattern is, however, not observed in the particle spectrum [9].
For example, the light pseudoscalar (JP = 0−) mesons, (π,K, η), have a consi-
derably lower mass than the scalar (JP = 0+) mesons.

The solution to this paradoxon is provided by the Nambu-Goldstone real-
ization of chiral symmetry [10] which asserts that the QCD vacuum, |0〉, is
not invariant under the action of the axial charges

Qa
V |0〉 = 0 Qa

A|0〉 $= 0 . (18)

The chiral SU(3)L×SU(3)R symmetry of the QCD Hamiltonian is said to be
spontaneously broken down to SU(3)V . Spontaneous breakdown of a symme-
try takes place if the full symmetry group of the Hamiltonian is not shared
by the vacuum.

Another example of spontaneous symmetry breakdown occurs in ferromag-
nets. For temperatures above the Curie temperature, T > Tc, the magnetic
dipoles are randomly oriented. As soon as the temperature falls below the
Curie temperature Tc spontaneous magnetization occurs and the dipoles are
aligned in some arbitrary direction. Spontaneous symmetry breakdown takes
also place for the SU(2)L×U(1) symmetry of the electroweak interactions.

In general, spontaneous breakdown of a continuous symmetry has imp-
ortant consequences. Goldstone’s theorem states that a spontaneously bro-
ken continuous symmetry implies massless spinless particles: the Goldstone
bosons. In the case of massless QCD, the eight axial charges Qa

A create states
|φ〉 = QA|0〉 which are energetically degenerate with the vacuum |0〉 since

H|φ〉 = HQA|0〉 = QAH|0〉 = 0 . (19)

This gives rise to eight massless pseudoscalar mesons. The axial charges Qa
A

acting on any particle state generate Goldstone bosons, e.g. an energy eigen-
state |ψ〉 is degenerate with the multi-particle state Qa

A|ψ〉 which resolves the
paradoxon from above.

The eight lightest hadrons are indeed the pseudoscalars π±,π0,K±,K0,K̄0,
η with masses mπ ≈ 138 MeV, mK ≈ 495 MeV and mη ≈ 547 MeV [9]. Since
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For example, the light pseudoscalar (JP = 0−) mesons, (π,K, η), have a consi-
derably lower mass than the scalar (JP = 0+) mesons.

The solution to this paradoxon is provided by the Nambu-Goldstone real-
ization of chiral symmetry [10] which asserts that the QCD vacuum, |0〉, is
not invariant under the action of the axial charges

Qa
V |0〉 = 0 Qa

A|0〉 $= 0 . (18)

The chiral SU(3)L×SU(3)R symmetry of the QCD Hamiltonian is said to be
spontaneously broken down to SU(3)V . Spontaneous breakdown of a symme-
try takes place if the full symmetry group of the Hamiltonian is not shared
by the vacuum.

Another example of spontaneous symmetry breakdown occurs in ferromag-
nets. For temperatures above the Curie temperature, T > Tc, the magnetic
dipoles are randomly oriented. As soon as the temperature falls below the
Curie temperature Tc spontaneous magnetization occurs and the dipoles are
aligned in some arbitrary direction. Spontaneous symmetry breakdown takes
also place for the SU(2)L×U(1) symmetry of the electroweak interactions.

In general, spontaneous breakdown of a continuous symmetry has imp-
ortant consequences. Goldstone’s theorem states that a spontaneously bro-
ken continuous symmetry implies massless spinless particles: the Goldstone
bosons. In the case of massless QCD, the eight axial charges Qa

A create states
|φ〉 = QA|0〉 which are energetically degenerate with the vacuum |0〉 since

H|φ〉 = HQA|0〉 = QAH|0〉 = 0 . (19)

This gives rise to eight massless pseudoscalar mesons. The axial charges Qa
A

acting on any particle state generate Goldstone bosons, e.g. an energy eigen-
state |ψ〉 is degenerate with the multi-particle state Qa

A|ψ〉 which resolves the
paradoxon from above.

The eight lightest hadrons are indeed the pseudoscalars π±,π0,K±,K0,K̄0,
η with masses mπ ≈ 138 MeV, mK ≈ 495 MeV and mη ≈ 547 MeV [9]. Since

{
Nambu-Goldstone realization

dQa
V,A

dt
= i[HQCD, Qa

V,A] = 0



• Weinberg (1979): the most general Lagrangian containning all 
terms allowed by the assumed symmetries gives rise to the 
most general S-matrix consistent with analyticity, unitarity and 
the assumed symmetries.

• Lagangian PP --> PP:

U(�) = ei
p
2�/f
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h1, h2 ∈ H it follows that h1h2 ∈ H. H is equivalent to the subgroup SU(3)V

which leaves the vacuum invariant.
The function

g → F (g, 0) = F (gh, 0) h ∈ H (41)

maps the coset space G/H onto the space of GB fields. This mapping is
invertible since F (g1, 0) = F (g2, 0) implies g−1

1 g2 ∈ H. As the dimension of
the coset space is equal to the number of Goldstone boson fields, the GBs can
be identified with elements of G/H. The Goldstone boson fields are said to
live on the coset space SU(3)L× SU(3)R/SU(3)V .

Any g ∈ G can be decomposed as g = qh with q ∈ G/H and h ∈ H. The
choice of representatives in the coset space G/H is arbitrary. Possible choices
are for example

g = (gL, gR) = (1, gRg−1
L )(gL, gL) ≡ qh (42)

or
g = (gL, gR) = (gLg−1

R , 1)(gR, gR) ≡ q′h′ . (43)

If we pick, e.g., the latter choice then the action of G on G/H is given by

(L,R)(gLg−1
R , 1) = (LgLg−1

R , R) = (LgLg−1
R R−1, 1)(R,R) . (44)

The Goldstone bosons are then summarized by the matrix-valued field
U = gLg−1

R which transforms under chiral transformations as

U(x) → U ′(x) = LU(x)R−1 = LU(x)R† (45)

for L/R ∈ SU(3)L/R. The exponential representation is convenient for U ∈
SU(3)

U = exp
(

i

f
φaλa

)
, (46)

where λa are the generators of SU(3)

φ = φaλa =
√

2





1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η



 . (47)

The chiral effective Lagrangian for QCD is written in terms of the GB
fields which are collected in the matrix-valued field U

Leff = Leff(U, ∂U, ∂2U, . . .) . (48)

The effective Lagrangian shares the same symmetries with QCD: C,P, T ,
Lorentz invariance and, in particular, chiral SU(3)L× SU(3)R symmetry. As
outlined above, the chiral Lagrangian is expanded in chiral powers which are

12 B. Borasoy

related (in the chiral limit) to the number of derivatives acting on the GB
fields. The chiral power counting of the Lagrangian reads

Leff = L(0)
eff + L(2)

eff + L(4)
eff + . . . . (49)

Only even chiral powers arise since the Lagrangian is a Lorentz scalar which
implies that tensor indices of derivatives appear in pairs. At each chiral or-
der the effective Lagrangian must be invariant under chiral SU(3)L× SU(3)R

transformations. At zeroth chiral order this invariance implies that L(0)
eff can

only be a function of UU† = 1. This amounts to an irrelevant constant in the
Lagrangian which can be dropped.

At second order, the chiral invariant terms with two derivatives are

L(2)
eff = c1〈∂µU†∂µU〉 + c2〈U†!U〉 , (50)

where 〈. . .〉 is the trace in flavor space. The second term can be reduced to the
first one by partial integration; only one term remains at second chiral order

L(2)
eff = c1〈∂µU†∂µU〉 . (51)

Since terms of zeroth chiral order have been dropped, the second chiral order
is effectively the leading order (LO). We note the appearance of a coupling
constant c1, a so-called low-energy constant (LEC). It is fixed by expanding
the matrix-valued field U in the GB fields φ

U = exp
(

i

f
φ

)
= 1 +

i

f
φ − 1

2f2
φ2 + O(φ3) (52)

and requiring the standard kinetic term

L(2)
eff =

1
2
∂µφa∂µφa + O(φ4) (53)

which yields c1 = f2/4.
Therefore, the effective Lagrangian at LO reads

L(2)
eff =

f2

4
〈∂µU†∂µU〉 . (54)

At leading chiral order there is only one LEC (in the chiral limit) and chiral
symmetry constrains all vertices with increasing number of GB fields in the
LO Lagrangian.

The interpretation of the LEC f can be directly inferred by considering
the Noether axial current of chiral symmetry for L(2)

eff

Aa
µ = i

f2

4
〈λa{∂µU,U†}〉 . (55)
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FIG. 4. Faddeev diagrams contributing to the process K0π0η → K0π0η with three-meson intermediate states. The vertical lines represent
the tree level amplitudes given in Eqs. (A.7)-(A.10).

fields,

Φ =









1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η









, (A.3)

andM the mass matrix,

M =







m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π






. (A.4)

The η meson mass is given by the Gell-Mann–Okubo mass
relation

m2
η =

1

3
(4m2

K −m2
π). (A.5)

If we expand U in series up to terms containing four pseu-
doscalar fields Φ, Eq. (A.1) becomes

L4P =
1

12f2
〈(∂µΦΦ− Φ∂µΦ)

2 +Mφ4〉. (A.6)

Using this Lagrangian, we get

VK0π0→K0π0 =
1

12f2
[s− 2t+ u− 2m2

K − 2m2
π] (A.7)

VK0π0→K0η = −
1

12
√
3f2

[3(s− 2t+ u)

+ 2m2
K − 2m2

π] (A.8)

VK0η→K0η =
1

12f2
[3(s− 2t+ u)

− 6m2
K + 2m2

π] (A.9)

Vπ0η→π0η = −
m2

π

3f2
, (A.10)

with the Mandelstam variables s = (k1+k2)2, t = (k1−k3)2

and u = (k1 − k4)2 for a process P1P2 → P3P4 with ki
the four momenta of the external particles. Considering the
identity s+ t+ u =

∑

k2i , we can write these amplitudes as

VK0π0→K0π0 =
1

12f2
[−3t+

∑

i

(k2i −m2
i )] (A.11)

VK0π0→K0η = −
1

12
√
3f2

[−9t+ 8m2
K +m2

π

+ 3m2
η + 3

∑

i

(k2i −m2
i )] (A.12)

VK0η→K0η =
1

12f2
[−9t+ 6m2

η

+ 2m2
π + 3

∑

i

(k2i −m2
i )], (A.13)

withmi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.



• Chiral perturbation  Theory (𝝌PT): series of Lagrangians 

in a power momentum expansion.

• Validity of the series: p << 1 GeV. 

• Convergence limited to                                                          
a narrow interval

{500 MeV, meson-meson 
                  scattering.
~ threshold, meson-baryon 
                       scattering.



• Consequence: we can not study resonances.

• Unitarization

𝝌PT + Unitarity

U𝝌PT 



• Unitarization:

SS† = 1 S = 1� iT

T � T † = �iTT †

< f |T |i > � < f |T †|i >= �i
X

a

Z
dQa < f |T |a >< a|T †|i >

< f |T |i >= Tfi(2⇡)
4�4(

X

f

pf �
X

i

pi)

Im{T�1
fi } = �⇢fi =

|~pi|
8⇡E

�fi



• Dispersion relation:
T�1
fi = V �1

fi � �fi


ai(s0) +

s� s0
⇡

Z 1

si

ds0
⇢fi(s0)

(s� s0)(s0 � s0)

�

⌘ V �1
fi �Gi(s)�fi

T = (1� V G)�1V

T = V + V GT

T � V GT = V

Bethe-Salpeter 
equation



• Dispersion relation:
T�1
fi = V �1

fi � �fi


ai(s0) +

s� s0
⇡

Z 1

si

ds0
⇢fi(s0)

(s� s0)(s0 � s0)

�

⌘ V �1
fi �Gi(s)�fi

T = (1� V G)�1V

T = V + V GT



• Dispersion relation:
T�1
fi = V �1

fi � �fi


ai(s0) +

s� s0
⇡

Z 1

si

ds0
⇢fi(s0)

(s� s0)(s0 � s0)

�

⌘ V �1
fi �Gi(s)�fi

T = (1� V G)�1V

T = V + V GT

+ + + ...
V V GV V GV GV



• Lowest order chiral Lagrangian:

FORMALISM

LPB =
1

4f2
hB̄i�µ[(@µ��� �@µ�))B �B(@µ��� �@µ�))i

LPP =
1

12f2
h(@µ��� �@µ�)

2 +M�4i



• We determine the lowest order amplitude:

• We solve the Bethe-Salpeter equation:

Gi(E) = Ni

Z
d4q

(2⇡)4
1

q2 �m2

1

(P � q)2 �M2 Ni =

n
1 meson-meson

2M meson-baryon

T = [1� VG]�1V



       

       

NK̄
       

       ⇡
⌃

Λ(1405)

       
       ̄K K       

       ⇡ ⇡
       

       ⇡ ⌘

σ(600), f0(980), a0(980)

       

       

⌃K

       

       K ⇤
N*(1535)

- J. A. Oller, Ulf-G. Meissner, Phys. Lett. B 500 (2001) 263-272; D. Jido, J. A. Oller, E. Oset, A. Ramos, U. G. Meissner, Nucl. Phys. A 725,181-200 (2003).
- J. A. Oller, E. Oset, Nucl. Phys. A 620 (1997) 438 ; J. A. Oller, E. Oset, J. R. Peláez, Phys. Rev. D 59 074001 (1999).                                  
- J. Nieves, E. Ruiz Arriola, Phys.Rev. D64,116008 (2001); C. Garcia-Recio, J. Nieves, E. Ruiz Arriola, Phys.Rev.D67, 076009 (2003).

• The use of effective field theories based on U𝝌PT 

has shed ligth on the nature of several meson and 
baryon states.
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• The use of effective field theories based on U𝝌PT 

has shed light on the nature of several meson and 
baryon states.
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Fig. 7. A possible inference of the Σ(1385) resonance to the
Λ(1405) spectrum of K−d → π+Σ−n at 800 MeV/c incident
K− momentum. The Σ(1385) spectrum (dashed line) is cal-
culated by the Breit-Wigner amplitude and the phase space
factor |p ∗

π | |pn|. The dash-dotted lines denotes an incoherent
sum of the Λ(1405) and Σ(1385) spectrum. The height of the
Σ(1385) spectrum is adjusted so as to reproduce the bump
structure around 1390 MeV in the observed spectrum. See also
the caption of Fig. 6.

the Σ(1385) resonance in the present formulation of the
two-body meson-baryon scattering amplitudes TK̄N→πΣ
following Ref. [29]. Because in angular integrated cross
sections the interference of s- and p-waves disappears, the
incoherent sum done here should be good and the relevant
finding for the present work is that consideration of the
Σ(1385) contribution does not distort the signal of the
Λ(1405) that we find.

Since the purpose of the paper is to show that the
peak around 1420 MeV is a reflection of the Λ(1405) and
is narrower than for the nominal Λ(1405), we have done an
alternative study assuming the shape of Fig. 7 to be made
by two Breit Wigner distributions that add incoherently.
A fit of excellent quality is obtained and the structure
peaking around 1420 MeV is very similar to what we ob-
tain theoretically from the Λ(1405). A best fit with only
one Breit Winger structure, obviously does not reproduce
the peak at lower energies in Fig. 7 and is of lower quality
than that of the two structures. Even then, it is interest-
ing to mention that the peak of this only structure is still
around 1420 MeV.

3.1.2 Λ∗ production cross section

We also estimate the production cross section of the Λ(1405)
in the K−d → Λ(1405)n reaction by integrating the spec-
trum obtained in our calculation over the πΣ invariant
mass around the resonance peak:

σΛ∗ = 3

∫ Mmax

Mmin

dMπ+Σ−

dσ

dMπ+Σ−

. (24)

The factor 3 accounts for the branching ratio of Λ(1405) →
π+Σ−. Taking Mmin = 1400 MeV and Mmax = 1440 MeV

  0
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Fig. 8. Incident K− momentum dependence of the Λ(1405)
production cross section calculated with the K−d → π+Σ−n
reaction. The data are taken from Ref. [28].

read from the figure, we obtain the Λ(1405) production
cross section as 385 µb with 800 MeV/c incident K−.
An experimental value observed in the K−d → π+Σ−n
reaction is reported to be 410±100 µb at 778 MeV/c of
the incident K− momentum [28]. The present calculation
fairly agrees with the observed value. This implies that the
Λ(1405) production mechanism in the present reaction is
explained by the three diagrams shown in Fig. 2.

In Fig. 8, we show the incident momentum depen-
dence of the Λ(1405) production cross section. The cross
sections are evaluated from the K−d → π+Σ−n chan-
nel by integrating the invariant mass spectra from 1400
MeV to 1440 MeV and multiplying by the isospin factor
3. The experimental data are taken again from Ref. [28].
Our calculation is consistent with the experimental data.
The bump structure seen in the theoretical calculation
around klab = 750 MeV/c corresponds to the Λ(1670) res-
onance production in the T1 amplitude of K−p → K̄0n
(see Fig. 2) 2.

3.2 Theoretical results of the πΣ invariant mass
spectra

3.2.1 Spectra of other πΣ charged states

In the previous section, we have seen that the Λ(1405) res-
onance appears around 1420 MeV in the π+Σ− invariant
mass spectrum. To confirm that the resonance position of
the Λ(1405) in the K̄ induced processes is higher than the
nominal Λ(1405), it is certainly necessary to project out
the I = 0 contributions from the invariant mass spectra,
since the shift of the resonance position could be explained
by interference between the I = 0 Λ(1405) resonance and
non-resonant I = 1 πΣ correlations.

2 The bump structure could be less pronounced with cor-
rections to the factorization approximation of the TK−N→K̄N

amplitude for the double scattering diagrams done in Eqs. (13)
and (16). For the details, see Sec. 3.2.5.

K�d ! ⇡+⌃�n

qmax = 1.0 GeV L̂1 L̂2 L̂3 L̂4 L̂5 L̂7 2L̂6 + L̂8

Our fit 0.5 1.0 -3.2 -0.6 1.7 0.2 0.8

Table 1:We list the values of the L̂i parameters (in units of 10−3) obtained from the fit of our method to
meson-meson scattering data.

Figure 1:We display the results of our method for the phase shifts of ππ scattering in the (I, J) = (0, 0), (1, 1), (2, 0)
channels, where the σ, f0 and ρ resonances appear, together with those of ππ → KK̄, as well as the phase shifts of
πK scattering in the (3/2, 0), (1/2, 0) and (1/2, 1) channels, where we can see the appearance of the K∗ resonance.
The results also include the π−η mass distribution for the a0 resonance in the (I, J) = (1, 0) channel from K−p →
Σ(1385)π−η. For reference to the data, see [3] and [7] and references therein.
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• Challenge of lattice QCD: determination of the spectra of 
mesons and baryons (lattice: discretized, finite space-time 
volume)

• Resonances do not correspond to isolated energy levels in 
the spectrum of the QCD Hamiltonian on the lattice.

• One channel problem

Finite volume

Luescher framework

Relates the measured discrete value of the energy in a finite volume to the scattering                  
phase shift at the same energy, for the same system in the infinite volume.

- M. Luescher, Commun. Math. Phys. 105, 153 (1986).
- M. Luescher, Nucl. Phys. B 354, 531 (1991).

S[⇣] =

Z
d

4
xL(⇣(x), @µ

⇣(x))

Gn(x1, · · · , xn) =

R
[d⇣]⇣(x1) · · · ⇣(xn)eiS[⇣]

R
[d⇣]eiS[⇣]



• Consider a cubic box of side length L.

• Using periodic boundary conditions, the finite volume 
allows only discrete momenta:

Z
d3~q

(2⇡)3
I(| ~q |) ! 1

L3

X

~q

I(| ~q |)

~q =
2⇡

L
~n, ~n 2 Z3

• To use U𝝌PT in a finite volume we replace the 
loop function G by      .G̃



• Dimensional regularization:

G̃(E) = GD(E) + lim
q
max

!1

"
1

L3

q
maxX

qi

I(qi)�
Z

q<q
max

d3q

(2⇡)3
I(q)

#

I(q) =
1

2!1(~q)!2(~q)

!1(~q) + !2(~q)

E2 � (!1(~q) + !2(~q))2 + i✏



• One channel case:

Infinite Volume

T (E) =
⇥
V �1(E)�GD(E)

⇤�1

Finite Volume

T̃ (E) =
h
V �1(E)� G̃(E)

i�1

• We search for the poles of      : V �1(E) = G̃(E)T̃

Regularization scale independent !

T (E) =
⇥
V �1(E)�GD(E)

⇤�1
=

h
G̃(E)�GD(E)

i�1

T (E)�1 = lim
q
max

!1

"
1

L3

q
maxX

q
i

I(qi)�
Z

q<q
max

d3q

(2⇡)3
I(q)

#



• Equivalent to Luescher formula but keeps all the 
terms of the relativistic two-body propagator (M. 
Doering, U.-G. Meißner, E. Oset, and A. Rusetsky, 
arxiv11073.3988 [hep-lat]).

• Multichannel case:

• We have applied it to the case of the Ds*0(2317): 
Dynamically generated in the KD, !Ds system              
(D. Gamermann, E. Oset, D. Strottman, M. J. Vicente 
Vacas, Phys. Rev. D76, 074016 (2007)).

det[1� V G̃] = 0

T̃ (E) =
h
1� V G̃(E)

i�1
V
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FIG. 2. Energy levels as functions of the cubic box size L, derived from the coupled channels

unitary approach of Ref. [25] and using G̃ from Eq. (11).

convergence to the value in the infinite volume. Yet, we would like to get more information
from the lattice data, for instance scattering phase shifts of KD, and eventually ηDs, but
we will restrict ourselves to just the first channel. We could also ask ourselves about the
nature of the bound state found. Of course, in the present problem where the Ds∗0(2317)
appears dynamically generated we should get as an answer that it is indeed a bound state
of KD with some admixture of ηDs, but if the lattice data were different than the levels
obtained by us, the possibility exist that the answer would be different. We address these
problems in section V.

III. THE INVERSE PROBLEM OF GETTING PHASE SHIFTS FROM LATTICE

DATA

In this section we face the problem of getting bound states and phase shifts in the infinite
volume from the energy levels obtained in the box using the two channel approach of Ref. [25],
which we would consider as “synthetic” lattice data. To accomplish this we need more
information than just the lowest level, but we shall see that the first two levels shown in
Fig. 2 already provide the necessary information to reproduce the problem in the infinite
volume.

In Ref. [19] several methods were suggested to solve the inverse problem, but we borrow
here the one based on a fit to the data in terms of a potential suggested by the work of
Ref. [25] or Ref. [22–24]. As we can see in Eq. (14), the potentials have a large constant
part, some terms proportional to s and some terms inversely proportional to s. It is very
easy to see that if one chooses a region of energies around a certain value of s, s0, the inverse
function of s can be expanded as a function of s − s0 to a good approximation. Choosing
s0 = (mK + MD)2 then the ansatz of the following equation

Vij = aij + bij(s − (mK + MD)2) (19)
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• We use these levels to face the problem of getting 
bound states and phase shifts in the infinite volume.

• We consider the energy levels obtained as “synthetic” 
lattice data.
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FIG. 3. Energy levels as functions of the cubic box size L, reconstructed from fits to the “data”

of Fig. 2 using the potential of Eq. (19). The band corresponds to different choices of parameters
within errors.
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FIG. 4. Phase shifts for KD scattering derived from the coupled channels unitary approach of

Ref. [25] (solid line). The band corresponds to the results obtained from the fits to the ”data” of
Fig. 2 using the potential of Eq. (19) with two channels.

KD scattering [25]. We may wonder whether a fit to the lattice data would be possible with
only one channel. It is well known that the effects of far away channels which are not too
relevant in a problem can be incorporated with modifications in the potential or G function
of the main channel. This is sometimes done explicitly, like in Ref. [38], where an effective
K̄N interaction is constructed that incorporates the effects of the πΣ channel, even if this
latter channel is relevant.
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• We determine the KD phase shift in the infinite 
volume.
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FIG. 5. Phase shifts for KD scattering derived from the coupled channels unitary approach of

Ref. [25] (solid line). The band corresponds to using the fits to the “data” of Fig. 2 using the
potential of Eq. (19) with only the KD channel.

for resonances not far from a threshold [30]. The answer of Weinberg is very simple, the
scattering length, a, and effective range, r, for the scattering of a pair of particles close to a
bound state to which they couple are given by

a =
2(1 − Z)

2 − Z
R + O(m−1

π )

r =
−Z

1 − Z
R + O(m−1

π )

R ≡ (2µB)−1/2 (24)

where Z is the fraction of the bound state that can be considered an elementary particle and
(1 − Z) the fraction of bound state of the two particles under consideration. R is the radius
of the system considered as a bound state of the pair of particles, where µ is its reduced
mass and B the binding energy. In the present case, considering the KD pair, it is about
1 fm. Certainly, in this case the terms of size O(m−1

π ) cannot be neglected, so the theorem
is of limited validity in the present case1. Another suggestion concerning the nature of the
Ds∗0(2317) state is made in Ref. [39] by looking at the particular dependence of the KD
scattering length on the K mass.

Coming back to the Weinberg’s approach, one can go to the root of the derivation of the
results of Ref. [29]. These results stem from a sum rule that comes from the normalization
to unity of the wave function of the bound state. A modern formulation of this sum rule
can be seen in Ref. [40] and states that

∑

i

g2
i

dGii

dE

∣

∣

∣

∣

∣

E=Eα

= −1 (25)

1 This reinforces the comment in Ref. [29] “One begins to suspect that Nature is doing her best to keep us

from learning whether the “elementary” particles deserve that title”.
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• In both cases, i.e., two and one channel, we get a pole at 
2317 ± 5 MeV.
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- D. Gamermann, J. Nieves, E. Oset, E. Ruiz Arriola, Phys. Rev. D81, 014029 (2010).

• Can we get information about the nature of the 
Ds*0(2317) from the lattice data?

|R >= A|HH > +B|H 0H 0 > + · · ·
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• Castillejo-Dalitz-Dyson (CDD) potential
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FIG. 9. Fits to the “data” of Fig. 2 using a potential of the type of Eq. (32) that contains a CDD

pole.

the use of an additional “lattice” level would put big constraints in the phase shifts in that
region helping us decide between the two options.

However, it is interesting to analyse the results obtained: we find the CDD pole at the
energy of about 2500 MeV, far away from the bound state of the Ds∗0(2317) state. If one
restricts oneself to low energies, the fit with the CDD would be acceptable. Yet, the fact that
the CDD pole has appeared so far away from the energy of the Ds∗0(2317) state is telling us
that the data do not want a CDD pole being responsible for this state. The CDD pole far
away in this case simply generates a smooth energy dependent potential in the region of the
low energies. The interesting thing is that if we calculate now Z from Eq. (33) we find that
Z ∼ 0.15, indicating that the bound state is basically a KD bound state, with the precision
that the limited low energy data provide. A more precise determination would require the
consideration of an additional level of the box.

It is also interesting to perform another test. Let us assume we had the lattice data which
correspond to the levels generated with the CDD potential in Fig. 6 and we would like to fit
them with the smooth potential of Eq. (19). The fit is bad, the χ2 is now of the order of 6
and the fit to the data can be seen in Fig. 11. The quality of the fit is worse than in all the
other fits that we have produced. Certainly, a better precision in the lattice data, and/or
the addition of extra data at smaller box sizes would tell us that the fit is actually very bad.
The addition of a third level would certainly help to disregard this solution. The exercise
has also served to show the importance of the scattering data to determine the nature of a
bound state.

To finalize the discussion, we present in Fig. 12 the results of the phase shifts that this
fit would generate. As we can see, the results are very different from those generated from
the CDD potential, such that if more precision is demanded to the lattice data such that
they can produce the phase shifts with accuracy, this type of fit would be easily ruled out.
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FIG. 10. Phase shifts from the fits with a CDD pole to the first two levels obtained with the

coupled channels approach of Ref. [25] shown in Fig. 9. The solid line corresponds to the results
with the two channel analysis of Fig. 4.
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FIG. 11. Fit to the levels produced with a CDD potential using the potential of Eq. (19) with one
channel.

VI. CONCLUSIONS

In summary we have addressed three problems in the present work. The first one is to
use the unitary coupled channel method in finite volume, generating the levels in a finite
size box as a function of L. The second problem is the inverse problem: we assume that the
results obtained before would correspond to results given by lattice calculations. From them
we would like to obtain bound states and scattering states in the case of the infinite volume.
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• Castillejo-Dalitz-Dyson (CDD) potential

CDD pole found ~ 2500 MeV
Z ~ 0.15

KD bound state
(a more precise determination 
implies one more level)
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In summary we have addressed three problems in the present work. The first one is to
use the unitary coupled channel method in finite volume, generating the levels in a finite
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we would like to obtain bound states and scattering states in the case of the infinite volume.
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CONCLUSIONS
• Two-body problem in finite Volume:

- We have generate the energy levels in  
   a cubic box for the DK, !Ds system using U𝝌PT. 

- Assuming our results as lattice data, we determine  
  poles and phase shifts in the case of infinite volume.

- The scheme does not depend on the regularization scale.
- Low energy region of KD: one channel case quite good.
- Information about the nature of the state: two levels and 
  use of a sume rule.



For the one channel problem, as shown in Ref. [19], the T -matrix in the infinite volume
can be obtained for the energies which are eigenvalues of the box by

T (E) =
(

V −1(E) − GD(E)
)−1

=
(

G̃(E) − GD(E)
)−1

. (21)

One can equally use the same procedure as done for two channels eliminating the V12 and
V22 parts of the potential. The results with both methods are basically identical.

It is interesting to remark that given the structure of G̃ in dimensional regularization,
Eq. (11), in the difference of Eq. (21) the function GD cancels identically and one finds

T (E)−1 = lim
qmax→∞





1

L3

qmax
∑

qi

I(qi) −
∫

q<qmax

d3q

(2π)3
I(q)



 (22)

This result is the same as the one obtained in Ref. [19] starting with cut off regularization,
and, as proved in Ref. [19] is nothing else than Lüscher formula, except that Eq. (22) keeps
all the terms of the relativistic two body propagator, while in order to get Lüscher’s results
one has to make the approximation of keeping only the first term of the expression on the
right hand side of Eq. (23)

1

2 ω1 ω2

ω1 + ω2

E2 − (ω1 + ω2)2 + iε
=

1

2E

1

p2 − $q2 + iε
−

1

2ω1 ω2

1

ω1 + ω2 + E

−
1

4 ω1 ω2

1

ω1 − ω2 − E
−

1

4 ω1 ω2

1

ω2 − ω1 − E
(23)

This choice is certainly justified in nonrelativistic Quantum Mechanics in the limit of large
masses compared with the momenta, but has limitations in a relativistic field theoretical
formalism. A thorough discussions of these drawbacks is made in Ref. [19]. By using
Eq. (22), we overcome these problems, and furthermore one does not need to use the Z00

Lüscher function.
In Fig. 5 we can see the results for the phase shifts obtained with one channel. We observe

that for low energies the results are very similar to those obtained with two channels. As
the energy increases, the results with two channels approach better the exact results.

V. THE BOUND STATE AND ITS NATURE

For the energy of the bound state we obtain also good results with the one and two
channel methods. The numerical results are E = 2317 ± 5 MeV in both cases.

It would be interesting to see if from the lattice data we could say something about the
nature of the Ds∗0(2317) state. Obviously with the “synthetic” lattice data which we have
produced the answer is trivial since the state was dynamically generated in our approach.
But if the real lattice results were different than those obtained here the answer might be
different.

A. Dynamically generated states

The problem has been solved for bound states close to threshold using the method of
Weinberg, based on the knowledge of the scattering length and effective range [29], and also
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