Identification of neutron-rich Zr isotopes with AGATA-PRISMA

Cesar Lizarazo¹, E. Merchán^{2,3} F. Cristancho¹

¹ Grupo de Física Nuclear, Universidad Nacional de Colombia
² T.U. Darmstadt, Germany.
³ GSI, Helmholtzzentrum fur Schwerionengforschung GmbH, Germany.

Andean School on «Nuclear Physics in the 21st Century»

2012

Development of the nuclear structure of neutron-rich isotopes in the $Z\sim38$ region populated by heavy-ion induced fission

E. Merchán^{1,4}, C.A.Ur², N.Mărginean³,

S. Pietri¹, J. Gerl¹, A. Bruce⁵, H–J. Wollersheim¹, M. Gorska¹, P. Boutachkov¹, C. Domingo–Pardo¹,

D.Bazzacco², P.G.Bizzeti⁶, A.M.Bizzeti–Sona⁶, D.Bucurescu³, Gh.Căta–Danil³, L.Corradi⁷, G.de Angelis⁷, D.Deleanu³, E.Farnea², E.Fioretto⁷, D.Filipescu³, A.Gadea⁸, D.Ghiţă³, A.Giannatiempo⁶, T.Glodariu³, A.Gottardo^{7,9}, M.Ionescu–Bujor³, A.Iordachescu³, Th.Kröll⁴, S.M.Lenzi^{2,9}, S.Lunardi^{2,9}, R.Mărginean³, B.Melon⁶, R.Menegazzo², D.Mengoni¹⁰, C.Michelagnoli^{2,9}, C.Mihai³, G.Montagnoli^{2,9}, D.Montanari⁷, A.Nannini⁷, D.R.Napoli⁷, A.Negreţ³, S.Pascu³, Zs.Podolyak¹¹, G.Pollarolo¹², F.Recchia^{2,9}, C.Rossi Alvarez², E.Sahin⁶, T.Sava³, F.Scarlassara^{2,9}, P.P Singh⁷, A.M.Stefanini⁷, L.Stroe³, G.Suliman³, S.Szilner¹³, J.J.Valiente–Dobon⁷, N.V.Zamfir³, T.Mijatovic¹³, and the AGATA Collaboration

> ¹ GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany ² INFN, Sezione di Padova, Italy ³ IFIN-HH, Bucharest, Romania ⁴ TU Darmstadt, Germany
> ⁵ School of Engineering, University of Brighton, Brighton, BN2 4GJ, U.K. ⁶ Dipartimento di Fisica dell'Universitá and INFN, Firenze, Italy ⁷ INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy ⁸ IFIC, Valencia, Spain ⁹ Dipartimento di Fisica dell'Universitá, Padova, Italy ¹⁰ University of West Scotland, Paisley, UK ¹¹ University of Surrey, UK ¹² Dipartimento di Fisica dell'Universitá and INFN, Torino, Italy ¹³ Ruder Bŏscović Institute, Zagreb, Croatia

Introduction

- Description of the de-excitation process on a nuclei: A main goal on nuclear structure.
 - Does it goes trough a Collective or a Single Particle de-excitation? Or a mixing?.
 - How can the nuclear models be tested with the measurement of experimental observables? (γ-radiation, life-times, etc.).
- A <u>simple</u> perspective for even-even nuclei:

Rotation is only possible for deformed nuclei!

$$H_{rot} = \frac{I^2}{2\Im}$$

I = Collective Angular moment \Im = Moment of Inertia

 $I = 0, 2, 4, \dots$

Introduction

• Energy spectra for a nucleus with collective rotations:

$$H_{rot} = \frac{I^2}{2\Im} \longrightarrow E_I = \frac{\hbar^2}{2\Im} I(I+1)$$

- If a nucleus shows this sort of spectrum means that its deformation is mainly axial.
- E_4/E_2 ratio as empirical criteria for the nucleus' deformation:

$$E_4/E_2 = \frac{E_{\gamma}(4^+ \to 2^+)}{E_{\gamma}(2^+ \to 0^+)} = \frac{20-6}{6-0} = 2,33$$

This can be measured on the lab!

Shape evolution for neutron-rich isotopes with Z~38

- The even-even isotopes in the Region of Z~40, present an interesting change in the nuclear deformation as the number of neutrons changes.
- Zr isotopes exhibit the fastest shape transition found in the nuclear landscape.

N, Number of neutrons

[www.nndcnbnl.gov/char]

Shape evolution for neutron-rich isotopes with Z~38

- The even-even isotopes in the Region of Z~40, present an interesting change in the nuclear deformation as the number of neutrons changes.
- Zr isotopes exhibit the fastest shape transition found in the nuclear landscape.

[J.L. Durell. Proc.Int.Conf. on Spectroscopy of Heavy Nuclei, 1990]

 More Information about Sr, Zr and Mo isotopes is needed to extend the study in this region!

Heavy-ion induced fission reactions

- Multinucleon transfer reactions:
 - Happens when *E* is much more than the Coulomb Barrier .
 - Similar **b** as in F-E reactions but the interaction time is shorter ($\sim 10^{-22}s$).
 - Both nuclei briefly graze each other exchanging some nucleons.
 - The nucleons exchange mechanism is not completely understood yet.
 - A small fraction of *E* is transformed in excitation energy of the exit channels

• This reactions are able to produce neutron-rich isotopes not accessible through FER.

γ -particle coincidence experiment

- With γ -radiation is possible to study the nuclear structure of an isotope.
- Multi-nucleon transfer reactions have more than just one *exit channel.*
- To study one particular channel it must be selected only its emitted γ -rays.
- An experimental setup that enables γ -particle coincidence is necessary,

- Lifetimes.
- Deformations.
- Band structures.
- Single particle excitations.
- etc.

γ -particle coincidence experiment

- With γ -radiation is possible to study the nuclear structure of an isotope.
- Nuclear reactions in general have more than one *exit channel*.
- To study a particular channel it must be selected only its emitted γ -rays.
- An experimental setup that enables γ -particle coincidence is necessary.

γ -particle coincidence experiment

- With γ -radiation is possible to study the nuclear structure of an isotope.
- Nuclear reactions in general have more than just one *exit channel*.
- To study the physics of a single produced nucleus is necessary to select only its emitted γ-rays.
- An experimental setup that enables γ -particle coincidence is necessary.

AGATA-PRISMA setup

• AGATA Demonstrator:

[http://www.lnl.infn.it/~spesweb/index.php/research-on-nuclear-physics/144-agata]

- γ-detector array solely built from HP Ge detectors.
- It enables the reconstruction the γ -ray trajectory via the technique of γ -ray tracking.
- The efficiency of the 4π -array is expected to be close to 50%
- AGATA-Demonstrator: is a subset of 5 detector units with full tracking capability.
- It was placed at LNL (Legnaro, Italy) during our experiment, currently is «Living» at GSI till 2014.

AGATA-PRISMA setup

• PRISMA Spectrometer:

- Provides the needed information to identify the ejectiles of the nuclear reactions.
- The large solid angle acceptance enables to perform spectroscopic studies of low cross section events. $(\Delta \theta = \pm 6^{\circ}, \Delta \psi = \pm 11^{\circ})$
- The Quadrupole-Dipole configuration separates ions by magnetic rigidity.
- Placed at LNL (Legnaro, Italy).

[http://clara.lnl.infn.it/images/LNLprisma19.jpg]

• PRISMA Spectrometer:

- Start Detector:
 - 2D-Position Histogram of the input isotopes on PRISMA.
 - Provides the Start Signal to get the Time-Of-Flight.
 - Its signals are used to obtain length's path for each event.
- Magnetic Quadrupole:
 - $\circ \quad \vec{F} = (bx)\vec{\iota} + (-by)\vec{j}$
 - Its purpose is focussing the input distribution onto the vertical plane.

Distribution

- Magnetic Dipole:
 - $\circ \quad qBV = mv^2/R.$
 - $\circ mv/q = BR$
 - $\circ \rho_m = BR$
 - $\circ~$ lons with different magnetic rigidity ρ_m have different paths on the dipole.
- Focal Plane Detector (MWPPAC):
 - Provides position at the PRISMA's focal plane, necessary to calculate length's path for each event .
 - Provides the Stop Signal to get the Time-Of-Flight.
 - 2D-Histogram of TOF vs x_{fp}

- $\Delta E E$ detectors:
 - The energy lost by heavy ions when they go through matter is ruled by the Bethe-Bloch formula,

$$\frac{dE}{dx} = (eZ)^2 \frac{N_0 z\rho}{Am\epsilon_0} \frac{1}{(\beta c)^2} \left[\ln\left(\frac{2mc^2\beta^2}{I(1-\beta^2)}\right) - \beta^2 \right]$$

• For non-relativistic cases (or slightly relativistic with $\beta \leq 0.1$), this equation is expressed as:

$$\frac{dE}{dx} \propto \frac{MZ^2}{E}$$

• Practical experimental technique to distinguish nuclei with different Z:

• $\Delta E - E$ detectors:

- Events with same Z value are gathered by the black polygons (graphical cuts).
- From now on, the analysis is performed with only one sort of isotope (Zr).

- Charge state selection.
 - Combining the expressions

$$E = \frac{1}{2}mv^2, \qquad \frac{mv^2}{R} = qvB,$$

• An expression to disentangle events with different charge-states is obtained:

$$\frac{2E}{R} = qvB,$$
$$E = \frac{qB}{2}(Rv)$$

• The velocity is obtained from the ratio between the path length and TOF, finally:

E

$$= \frac{qB}{2} \left(\frac{RD}{TOF} \right) \implies \text{This can be checked out from} \\ \text{the experimental data}$$

• Charge state selection.

• A over Q separation.

A/Q vs x_fp {Zr & Q2)

• Mass Calibration.

• Each A/q spectrum is calibrated to a mass units (linear calibration).

• Mass- γ Energy Matrix.

Results

• γ -rays in coincidence with mass 100 and 102 for Zr isotopes.

ProjectionX of biny=[70,77]

Results

• γ -rays in coincidence with mass 100 and 102 for Zr isotopes.

ProjectionX of biny=[86,93]

Conclusions

- *First* results are clear evidence for the population of 100Zr and 102Zr. Approx. 15% of the statistics has been processed.
- Problems with the pressure in the IC array for $x_{fp} < 600$, prevents a clear A/Q separation.
- It is possible to identify the peak of 104Zr in the current Mass Spectrum. Therefore, it is possible to get some coincident γ -rays after the analysis of the full statistics.
- Construction of γ γ matrices to get clean spectra is one of the next steps in the analysis.

MUCHAS GRACIAS!!