Excited baryons coupled to vector and pseudoscalar mesons

K. P. Khemchandani

IF-Universidade de São Paulo

Escuela Andina: Física Nuclear en el siglo 21

Nov 26-31, 2012.

Collaborators:

A.Hosaka (RCNP, Japan) A. Martinez Torres(IF-USP) H. Kaneko(RCNP, Japan) H. Nagahiro (Nara Women's Univ., Japan)

UNTIL ABOUT 1960:

MATTER CONSTITUTED OF ELECTRONS, PROTONS AND NEUTRONS

AND VARIOUS BOUND SYSTEMS OF THREE TYPES OF PARTICLES FORM THE ELEMENTS.

Periodic Table of the Elements

	1 IA	New Original		Alkali	metals		Act	inide serie	es	c	Solid							18 VIIIA	_
1	1 ¹ H Hydrogen 1.00794	2 IIA		Alkali	ne earth m	etals	Poo	or metals		Br	Liquid		13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 ² He Helium 4.002602	К
2	3 2 Li Lithium 6.941	4 2 Be Beryllium 9.012182	Lanthanide series		Nonmetals Noble gases		Тс	Gas Synthetic		5 23 B Boron 10.811	6 2 C Carbon 12.0107	7 25 N Nitrogen 14,00674	8 2 6 0 0xygen 15.9994	9 27 F Fluorine 18.9984032	10 28 Ne Neon 20.1797	KL			
3	11 28 Na 1 Sodium 22.989770	12 28 Mg Magnesium 24.3050	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 - VIIIB	10	11 IB	12 IIB	13 28 33 Aluminum 26.981538	14 28 Si Silicon 28.0855	15 28 P Phosphorus 30.973761	16 28 S Sulfur 32.066	17 28 CI Chlorine 35.453	18 28 Ar Argon 39.948	KLM
4	19 8 K 1 Potassium 39.0983	20 28 Ca 28 Calcium 40.078	21 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	22 28 Ti 10 10 2 Titanium 47.867	23 28 V 11 Vanadium 50.9415	24 28 Cr 13 Chromium 51.9961	25 28 Mn 13 Manganese 54.938049	26 8 Fe 14 Iron 55.8457	27 28 Co 15 Cobalt 58.933200	28 28 Ni 16 58.6934	29 28 Cu 18 Copper 63.546	30 28 Zn 18 Zinc 65.409	31 28 Ga ¹⁸ Gallium 69.723	32 28 Ge 18 Germanium 72.64	33 2 8 As ¹⁸ Arsenic 74.92160	34 28 Se 18 Selenium 78.96	35 28 Br 18 87 Bromine 79.904	36 28 Kr 18 Krypton 83.798	Z KL
5	37 28 Rb Rubidium 85.4678	38 Sr Strontium 87.62	39 28 Y 18 92 Yttrium 88.90585	40 28 Zr 18 2/ Zirconium 91.224	41 28 Nb 12 Niobium 92.90638	42 Mo 95.94	43 28 Tc 18 Technetium (98)	44 8 Ru Ruthenium 101.07	45 28 Rh 16 102.90550	46 28 Pd 18 Palladium 106.42	47 28 Ag 18 Silver 107.8682	48 28 Cd 18 Cadmium 112.411	49 28 10 18 18 10 114.818	50 28 Sn 18 18 18 18 18 18 18 18 18 18	51 28 5b 18 Antimony 121.760	52 28 Te 18 18 18 18 18 18 18 18 18 18 18 18 18 1	53 28 18 18 18 18 18 18 18 18 126.90447	54 28 Xe 18 Xenon 131.293	KUZZO
6	55 28 Cs 18 Cesium 1 132.90545	56 2 Ba 18 Barium 2 137.327	57 to 71	72 28 Hf 18 Hafnium 2 178.49	73 28 Ta 18 180.9479	74 28 W 18 Tungsten 183.84	75 28 Re 18 Rhenium 2 186.207	76 28 Os 18 Osmium 2 190.23	77 28 Ir 18 32 15 Iridium 2 192.217	78 28 Pt 18 Platinum 195.078	79 2 Au 32 Gold 1 196.96655	80 28 Hg 18 Mercury 200.59	81 28 TI 18 Thallium 204.3833	82 28 Pb 32 Lead 4 207.2	83 28 Bi 18 Bismuth 208.98038	84 28 Polonium 6(209)	85 28 At 18 Astatine 7 (210)	86 28 Rn 18 Radon 822 (222)	K ⊔⊠ZO₽
7	87 2 8 Fr 18 5 Francium 22 18 18 18 18 18 18 18 18 18 18 18 18 18	88 2 Ra 32 Radium 8 (226) 2	89 to 103	104 28 Rf 32 Rutherfordium 10 (261) 2	105 28 Db 32 Dubnium 11 (262) 2	106 28 Sc 32 Seaborgium 12 (266) 2	107 28 Bh 18 Bohrium 22 (264) 2	108 28 Hs 18 Hassium 14 (269) 2	109 28 Mt 32 Meitnerium 15 (268) 2	110 28 Ds 18 Darmstadtium 17 (271) 1	111 2 Rg 32 Roentgenium 18 (272) 1	112 28 Uub 18 Ununbium 18 (285) 2	113 Uut Ununtrium (284)	114 Uuq ^{Ununquadium} (289)	115 Uup ^{Ununpentium} (288)	116 Uuh ^{Ununhexium} (292)	117 Uus ^{Ununseptium}	118 Uuo ^{Ununoctium}	KUZZORØ
			Atomic masses in parentheses are those of the most stable or common isotope.																
									Design Copyright (D 1997 <u>Michael D</u>	<u>ayah</u> (michael@da	iyah.com). http://w	ww.dayah.com/per	iodic/					
Note: The subgroup numbers 1- 18 were adopted in 1984 by the International Union of Pure and Applied Chemistry. The names of elements 112-118 are the Latin equivalents of those numbers.			57 28 La 18 Lanthanum 2 138.9055	58 28 Ce 18 Cerium 2 140.116	59 28 Pr 28 Praseodymium 2 140.90765	60 28 Nd 18 Neodymium 2 144.24	61 28 Pm 18 Promethium 2 (145)	62 28 Sm 24 Samarium 2 150.36	63 28 Eu 18 Europium 2 151.964	64 28 Gd 18 Gadolinium 2 157.25	65 28 Tb 18 27 Terbium 2 158.92534	66 28 Dy 18 Dysprosium 2 162.500	67 28 Ho Holmium 164.93032	68 28 Er 18 Erbium 2 167.259	69 28 Tm 18 31 Thulium 2 168.93421	70 28 Yb 188 322 Ytterbium 2 173.04	71 28 Lu 18 18 32 Lutetium 2 174.967		
			89 28 Ac 18 Actinium 9 (227) 2	90 2 Th 18 32 Thorium 10 232.0381 2	91 28 Pa 18 Protactinium 231.03588 22	92 28 U 18 Uranium 9 238.02891 2	93 28 Np 18 Neptunium 9 (237) 2	94 28 Pu 18 94 94 94 94 94 94 92 94 92 94 92 94 94 94 94 94 94 94 94 94 94 94 94 94	95 28 Americium 22 (243) 22	96 28 Cm 18 32 Curium 9 (247) 2	97 2 Bk 18 Berkelium 27 (247) 2	98 28 Cf 32 Californium 8 (251) 2	99 2 Es 18 22 Einsteinium 8 (252) 2	100 28 Fm 18 Fermium 8 (257) 2	101 28 Mol 18 Mendelevium 8 (258) 2	102 28 No 18 Nobelium 22 (259) 2	103 28 Lr 32 Lawrencium 9 (262) 2		

Section Se

EG: $2H + 0 \rightarrow H_2O$ C + $2O \rightarrow CO_2$

DURING 1964-1969:

SUB-STRUCTURE OF PROTONS AND NEUTRONS WAS

Ref: PHYS. REV, 142, 1966 T. JANSSENS, R. HOFSTADTER, E. B. HUGHES, AND M. R. YKARIAN

NOW THE LIGHTEST "HADRONS"!!

HADRONS (MESONS AND BARYONS)ARE BOUND SYSTEMS OF QUARKS.

u	d	S		
Q =+2/3	Q =-1/3	Q =-1/3		
c	b	t		
Q =-1/3	Q =-1/3	Q =-1/3		

STANDARD MODEL: THE BASIC CONSTITUENTS OF MATTER: QUARKS & LEPTONS

e	μ	τ		
Q =+2/3	Q =-1/3	Q =-1/3		
v	v	v		
Q =-1/3	Q =-1/3	Q =-1/3		

✤ MANY HADRONS HAVE BEEN DISCOVERED SINCE THEN.

The particle data group

► Mesons

- Light unflavoured
- Strange
- Charmed
- Charmed, Strange
- Bottom
- Bottom, Strange
- Bottom, Charmed
- ► CC
- ► bb
- Non qq Candidates

Baryons

- N Baryons
- Baryons
- Exotic Baryons
- Baryons
- Baryons
- Baryons
- Baryons
- Charmed Baryons
- Doubly-Charmed Baryons
- Bottom Baryons

№ MANY HADRONS HAVE BEEN DISCOVERED SINCE THEN.

Π±	1-(0-)	ω(1420)	0-(1)	η(1760)	0+(0-+)	
Π ⁰	1-(0-+)	$f_2(1430)$	$0^{+}(2^{++})$	п(1800)	1-(0-+)	
η	0+(0-+)	a0(1450)	$1^{-}(0^{++})$	f ₂ (1810)	0+(2++)	
$f_0(600)$ or σ	0+(0++)	o(1450)	$1^{+}(1^{})$	X(1835)	? [?] (? ⁻⁺)	
ρ(770)	1+(1)	n(1475)	$0^{+}(0^{-+})$	φ ₃ (1850)	0-(3-)	
ω(782)	0-(1-)	$f_0(1500)$	0+(0++)	η2(1870)	0+(2-+)	
ŋ'(958)	0+(0-+)	f ₁ (1510)	$0^{+}(1^{++})$	п2(1880)	1-(2-+)	T1 1
f ₀ (980)	0+(0++)	f ₂ '(1525)	0+(2++)	ρ(1900)	1+(1)	They can be
$a_0(980)$	1-(0++)	f ₂ (1565)	0+(2++)	f ₂ (1910)	0+(2++)	_
Φ(1020)	0-(1)	o(1570)	1+(1)	f ₂ (1950)	0+(2++)	qq
$h_1(1170)$	0-(1+-)	h ₁ (1595)	$0^{-}(1^{+-})$	ρ ₃ (1990)	1+(3)	11
$b_1(1235)$	1+(1+-)	п1(1600)	$1^{-}(1^{-+})$	f ₂ (2010)	0+(2++)	$(\alpha \overline{\alpha})^*$
$a_1(1260)$	1-(1++)	a ₁ (1640)	$1^{-}(1^{++})$	f ₀ (2020)	0+(0++)	(qq)
f ₂ (1270)	0+(2++)	$f_2(1640)$	$0^{+}(2^{++})$	a ₄ (2040)	1-(4++)	
$f_1(1285)$	0+(1++)	n ₂ (1645)	$0^{+}(2^{-+})$	f ₄ (2050)	0+(4++)	qqqq
n(1295)	0+(0-+)	ω(1650)	$0^{-}(1^{})$	п2(2100)	1-(2-+)	
п(1300)	1-(0-+)	$\omega_{3}(1670)$	$0^{-}(3^{-})$	f ₀ (2100)	0+(0++)	molecules
$a_2(1320)$	1-(2++)	$\Pi_2(1670)$	$1^{-}(2^{-+})$	f ₂ (2150)	0+(2++)	
$f_0(1370)$	0+(0++)	$\phi(1680)$	$0^{-}(1^{-})$	ρ(2150)	1+(1)	Glueballs
$h_1(1380)$?-(1+-)	$0_3(1690)$	$1^{+}(3^{})$	φ(2170)	0-(1)	Oracouno
= (1400)	- (-) - (-)	o(1700)	$1^{+}(1^{})$	f ₀ (2200)	0+(0++)	
Π ₁ (1400)	1-(1-+)	$a_2(1700)$	$1^{-}(2^{++})$	fj(2220)	0+(2++ or 4++	
η(1405)	0+(0-+)	G2(1710)		η(2225)	0+(0-+)	X
<i>t</i> ₁ (1420)	0+(1++)	$T_0(1/10)$	$0^{+}(0^{++})$	ρ ₃ (2250)	1+(3-)	~ >

Not all of them can be explained in quark model.

More motivation

- Important contributions made by the study of hadrons:
 - + FORMULATION OF THE QUARK MODEL.
 - * Studies of Δ^{++} brought the first indications of an additional quantum number.
 - * Studies of J/ ψ gave the indications of existence of the charm quarks.
- By studying hadrons: we are still in the process of understanding the working of the strong interactions at lower energies.

Ref: SIGNATURES OF EXOTIC HADRONS, FRANCESCO RENGA: arXiv:1110.4151v1 [hep-ph]

FROM THE THEORY OF STRONG INTERACTIONS

Low and intermediate energies

CONSEQUENCE: MANY UNSTABLE HADRONS/RESONANCES EXIST AT THESE ENERGIES.

FROM THE THEORY OF STRONG INTERACTIONS

intermediate energies

CONSEQUENCE: MANY UNSTABLE HADRONS/RESONANCES EXIST AT THESE ENERGIES.

FROM THE THEORY OF STRONG INTERACTIONS

CONSEQUENCE: MANY UNSTABLE HADRONS/RESONANCES EXIST AT THESE ENERGIES.

FROM THE THEORY OF STRONG INTERACTIONS

CONSEQUENCE: MANY UNSTABLE HADRONS/RESONANCES EXIST AT THESE ENERGIES.

How to make such studies?

- QCD becomes non-perturbative at such energies.
- Some excellent alternatives are available: (1) Lattice QCD
 (2) holographic QCD (3)QCD inspired Effective field theories
- In case (1) and (2) a lot of work is required to obtain information related to resonances.
- ✤ Option (3) can be more efficient to study resonances.

- In this talk we will focus on baryonic systems.
- Lightest meson-baryon system--> pseudoscalar mesons+
 baryons
- Effective field theories^{##} for such system are well studied
- They are based on the idea that the low energy hadron dynamics is governed by chiral symmetry^{\$\$} and its spontaneous breaking^{\$\$}.

##Explained in lectures by Prof. Bertulani

^{\$\$}For a brief introduction please see I.T.5 by Alberto Martinez Torres on Nov 30 at10:30hrs.

Vector meson-baryon systems:

 Pseudoscalar-baryon systems: well explained in terms of Weinberg Tomozawa interaction + other low energy theorems.

Interest in Vector-meson(VB) Baryon systems is relatively new.

New issue/problem: Low energy theorems not applicable -->

No apriori reason to neglect s-, u-channel (etc.).

Hidden local symmetry:

Ref: Bando, Kugo, Yamawaki Phys. Rept. (1988)

(1) based on nonlinear realization of the chiral symmetry (one starts with the nonlinear sigma model)

$$\mathcal{L}_0 = \frac{J\pi}{4} Tr(\partial_\mu U \partial^\mu U^\dagger) \quad U = (\sigma + i\vec{\tau} \cdot \vec{\pi})$$

(2) take vector mesons as dynamical gauge bosons (in addition to the Goldstone bosons)

$$\mathcal{L} = \mathcal{L}_0 + a\mathcal{L}_{\mathcal{V}} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}(\partial_{\nu}B_{\mu} - \partial_{\mu}B_{\nu})^2$$

(3) Motivation: vector meson dominance--> which naturally appears as a consequence in this theory, (+ universality of rho meson coupling $g_{\rho\pi\pi} = g_{\rho NN}$ (Sakurai) +KSRF relation[Kawarabayashi and Suzuki, 1966],[Riazuddin and Fayyazuddin, 1966 +)

Diagrams, we consider:

- t-channel (vector meson) exchange
- Contact interaction (Hidden local symmetry Lagrangian).
- s- and u-channel baryon exchange

$$\mathcal{L}_{\rho NN} = -g\bar{N} \left\{ F_1 \gamma_\mu \rho^\mu + \frac{F_2}{4M} \sigma_{\mu\nu} \rho^{\mu\nu} \right\} N$$

SU(2):
$$\mathcal{L}_{\rho NN} = -g\bar{N}\left\{F_1\gamma_\mu\rho^\mu + \frac{F_2}{4M}\sigma_{\mu\nu}\rho^{\mu\nu}\right\}N$$

SU(2):
$$\mathcal{L}_{\rho NN} = -g \widehat{\mathbb{N}} \left\{ F_1 \gamma_\mu \rho^\mu + \frac{F_2}{4M} \sigma_{\mu\nu} \rho^{\mu\nu} \right\} N$$

SU(2):
$$\mathcal{L}_{\rho NN} = -g \widehat{\mathbb{N}} \left\{ F_1 \gamma_\mu \rho^\mu + \frac{F_2}{4M} \sigma_{\mu\nu} \rho^{\mu\nu} \right\} N$$
$$= 1$$

SU(2): $\mathcal{L}_{\rho NN} = -g \left[\overline{N} \right] \left\{ F_1 \gamma_\mu \rho^\mu + \frac{\left(F_2 \right)}{4M} \sigma_{\mu\nu} \rho^{\mu\nu} \right\} N$

SU(2): $\mathcal{L}_{\rho NN} = -g \left(\overline{N} \right) \left\{ F_1 \gamma_\mu \rho^\mu + \frac{\left(F_2 \right)}{4M} \sigma_{\mu\nu} \rho^{\mu\nu} \right\} N$ = 1

Interesting feature: (in SU(2))

		WT	Contact interaction	(S+U)-channel		
I=1/2 s=1/2		$\underline{m_{\rho}}$	$\frac{4m_{\rho}}{3f_{\pi}^2}$	$\left(\frac{1}{20} - \frac{1}{2}\right) \frac{m_{\rho}}{f_{\pi}^2}$		
	s=3/2	f_{π}^2	$\frac{-2m_{\rho}}{3f_{\pi}^2}$	$\frac{m_{\rho}}{f_{\pi}^2}$		
I=3/2 s=1/2		$\frac{m_{ ho}}{2f^2}$	$\frac{-4}{3}\frac{m_{\rho}}{2f_{\pi}^2}$	$2\frac{m_{\rho}}{2f_{\pi}^2}$		
	s=3/2	$-J\pi$	$\frac{2}{3} \frac{m_{\rho}}{2f_{\pi}^2}$	$-\frac{4m_{\rho}}{2f_{\pi}^2}$		

$$V_{contact} = \frac{3m_{\rho}}{2f_{\pi}^{2}} \left\{ \frac{3}{4} \vec{s}_{\rho} \cdot \vec{s}_{N} + \frac{1}{2} \vec{s}_{\rho} \cdot \vec{s}_{N} \ \vec{\tau}_{\rho} \cdot \vec{\tau}_{N} \right\}$$
$$V_{t} = \frac{m_{\rho}}{f_{\pi}^{2}} \vec{\tau}_{\rho} \cdot \vec{\tau}_{N} \qquad V_{s} = \left\{ \frac{1}{6} - \frac{1}{3} \vec{s}_{\rho} \cdot \vec{s}_{N} - \frac{1}{3} \vec{\tau}_{\rho} \cdot \vec{\tau}_{N} + \frac{2}{3} \vec{s}_{\rho} \cdot \vec{s}_{N} \vec{\tau}_{\rho} \cdot \vec{\tau}_{N} \right\} \frac{m_{\rho}}{f_{\pi}^{2}}$$
$$V_{u} = \left\{ \frac{1}{2} + \vec{s}_{\rho} \cdot \vec{s}_{N} + \vec{\tau}_{\rho} \cdot \vec{\tau}_{N} + 2\vec{s}_{\rho} \cdot \vec{s}_{N} \vec{\tau}_{\rho} \cdot \vec{\tau}_{N} \right\} \frac{m_{\rho}}{f_{\pi}^{2}}$$

1

$$\mathcal{L}_{\rho NN} = -g\bar{N} \left\{ F_1 \gamma_\mu \rho^\mu + \frac{F_2}{4M} \sigma_{\mu\nu} \rho^{\mu\nu} \right\} N$$

SU(3): $\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$ D = 2.4 F = 0.82 $g = \frac{m_v}{\sqrt{2}f_{\pi}}$

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$

$$V = \begin{pmatrix} \frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{\rho^{+}}{\sqrt{2}} & \frac{K^{*+}}{\sqrt{2}} \\ \frac{\rho^{-}}{\sqrt{2}} & -\frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{K^{*0}}{\sqrt{2}} \\ \frac{K^{*-}}{\sqrt{2}} & \frac{\bar{K}^{*0}}{\sqrt{2}} & \frac{\phi}{\sqrt{2}} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \frac{\Xi^{-}}{2} & \frac{\bar{K}^{*0}}{\sqrt{6}} & \frac{\phi}{\sqrt{6}} \end{pmatrix}$$

$$\mathcal{L}_{\rho NN} = -g\bar{N} \left\{ F_1 \gamma_\mu \rho^\mu + \frac{F_2}{4M} \sigma_{\mu\nu} \rho^{\mu\nu} \right\} N$$

SU(3):
$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

$$\begin{array}{c} \mathsf{D} = 2.4 \\ \mathsf{F} = 0.82 \end{array} \longrightarrow \qquad \mathsf{D} + \mathsf{F} = 3.22 \approx \kappa_{\rho} \qquad g = \frac{m_{v}}{\sqrt{2}f_{\pi}} \end{array}$$

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$

$$V = \begin{pmatrix} \frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{\rho^{+}}{\sqrt{2}} & \frac{K^{*+}}{\sqrt{2}} \\ \frac{\rho^{-}}{\sqrt{2}} & -\frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{K^{*0}}{\sqrt{2}} \\ \frac{K^{*-}}{\sqrt{2}} & \frac{\bar{K}^{*0}}{\sqrt{2}} & \frac{\phi}{\sqrt{2}} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & \frac{-2\Lambda}{\sqrt{6}} \end{pmatrix}$$

SU(2):
$$\mathcal{L}_{\rho NN} = -g\bar{N}\left\{F_1\gamma_{\mu}\rho^{\mu} + \frac{F_2}{4M}\sigma_{\mu\nu}\rho^{\mu\nu}\right\}N$$

SU(3):
$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

$$D = 2.4$$

$$F = 0.82 \qquad D + F = 3.22 \approx \kappa_{\rho} \qquad g = \frac{m_{v}}{\sqrt{2}f_{\pi}}$$

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$

$$V = \begin{pmatrix} \frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{\rho^{+}}{\sqrt{2}} & \frac{K^{*+}}{\sqrt{2}} \\ \frac{\rho^{-}}{\sqrt{2}} & -\frac{\rho^{0}}{2} + \frac{\omega}{2} & \frac{K^{*0}}{\sqrt{2}} \\ \frac{K^{*-}}{\sqrt{2}} & \frac{\bar{K}^{*0}}{\sqrt{2}} & \frac{\phi}{\sqrt{2}} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & \frac{-2\Lambda}{\sqrt{6}} \end{pmatrix}$$

Vector Meson-Baryon interaction: ω - ϕ mixing

Under the ideal mixing assumption:

$$\omega = \sqrt{\frac{1}{3}}\omega_8 + \sqrt{\frac{2}{3}}\omega_0$$
$$\phi = -\sqrt{\frac{2}{3}}\phi_8 + \sqrt{\frac{1}{3}}\phi_0$$

=3F-D

Use the octet part of these wave-functions in

$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V^{\mu}, B \right] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[V^{\mu\nu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ V^{\mu\nu}, B \right\} \rangle \right) \right\}$$

and add

$$\mathcal{L}_{V_0BB} = -g \left\{ \langle \bar{B}\gamma_\mu B \rangle \langle V_0^\mu \rangle + \frac{C_0}{4M} \langle \bar{B}\sigma_{\mu\nu} V_0^{\mu\nu} B \rangle \right\}$$

for the singlet meson-Baryon interaction.

Vector Meson-Baryon interaction: t-channel (vector exchange)

$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} \left[V_{8}^{\mu}, B \right] \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} \left[\partial^{\mu}V_{8}^{\nu} - \partial^{\nu}V_{8}^{\mu}, B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ \partial^{\mu}V_{8}^{\nu} - \partial^{\nu}V_{8}^{\mu}, B \right\} \rangle \right) + \langle \bar{B}\gamma_{\mu}B \rangle \langle V_{0}^{\mu} \rangle + \frac{C_{0}}{4M} \langle \bar{B}\sigma_{\mu\nu}V_{0}^{\mu\nu}B \rangle \right\}$$

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$

$$\mathcal{L}_{3V} = -\frac{1}{2} \langle V^{\mu\nu}, V_{\mu\nu} \rangle$$

$$V_t = -C_{ij}^t \frac{1}{4f_\pi^2} (k_1^0 + k_2^0) \vec{\epsilon_1} \cdot \vec{\epsilon_2}$$

Vector Meson-Baryon interaction: t-channel (vector exchange)

$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} [V_{8}^{\mu}, B] \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} [\partial^{\mu}V_{8}^{\nu} - \partial^{\nu}V_{8}^{\mu}, B] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \{\partial^{\mu}V_{8}^{\nu} - \partial^{\nu}V_{8}^{\mu}, B\} \rangle \right) + \langle \bar{B}\gamma_{\mu}B \rangle \langle V_{0}^{\mu} \rangle + \frac{C_{0}}{4M} \langle \bar{B}\sigma_{\mu\nu}V_{0}^{\mu\nu}B \rangle \right\}$$

$$V^{\mu\nu} = \left(\partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} \right) + ig[V^{\mu}, V^{\nu}]$$

$$\mathcal{L}_{3V} = -\frac{1}{2} \langle V^{\mu\nu}, V_{\mu\nu} \rangle$$

$$V_t = -C_{ij}^t \frac{1}{4f_\pi^2} (k_1^0 + k_2^0) \vec{\epsilon_1} \cdot \vec{\epsilon_2}$$

Vector Meson-Baryon interaction: t-channel (vector exchange)

$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} [V_{8}^{\mu}, B] \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} [\partial^{\mu}V_{8}^{\nu} - \partial^{\nu}V_{8}^{\mu}, B] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \{\partial^{\mu}V_{8}^{\nu} - \partial^{\nu}V_{8}^{\mu}, B\} \rangle \right) + \langle \bar{B}\gamma_{\mu}B \rangle \langle V_{0}^{\mu} \rangle + \frac{C_{0}}{4M} \langle \bar{B}\sigma_{\mu\nu}V_{0}^{\mu\nu}B \rangle \right\}$$

$$V^{\mu\nu} = \left(\partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} \right) + ig[V^{\mu}, V^{\nu}]$$

$$\mathcal{L}_{3V} = -\frac{1}{2} \langle V^{\mu\nu}, V_{\mu\nu} \rangle$$

$$V_t = -C_{ij}^t \frac{1}{4f_\pi^2} (k_1^0 + k_2^0) \vec{\epsilon_1} \cdot \vec{\epsilon_2}$$

Vector Meson-Baryon contact interaction:

$$V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + ig[V^{\mu}, V^{\nu}]$$

Vector Meson-Baryon contact interaction:

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + (ig[V^{\mu}, V^{\nu}])$

Vector Meson-Baryon contact interaction:

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu} + (ig[V^{\mu}, V^{\nu}])$ B $K_1, \epsilon_1 V$

$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$

$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$

$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$
$$i\vec{S}$$

 $\mathcal{L}_{VVBB} = -\frac{g}{4M} \left\{ F \langle \bar{B}\sigma_{\mu\nu} \left[2ig \left[V^{\mu}, V^{\nu} \right], B \right] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \left\{ \left[2ig \left[V^{\mu}, V^{\nu} \right], B \right\} \rangle \right) \right\}$

$$V_{contact} = -iC_{ij}^{contact} \frac{g^2}{2M_B} \vec{\sigma} \cdot \vec{\epsilon_2} \times \vec{\epsilon_1}$$
$$\vec{s} \cdot \vec{iS}$$

Spin dependent

S- and U-channel diagrams:

$$\mathcal{L}_{VBB} = -g \left\{ \langle \bar{B}\gamma_{\mu} [V_{8}^{\mu}, B] \rangle + \frac{1}{4M} \left(F \langle \bar{B}\sigma_{\mu\nu} [\partial^{\mu}V_{8}^{\nu} - \partial^{\nu}V_{8}^{\mu}, B] \rangle + D \langle \bar{B}\sigma_{\mu\nu} \{\partial^{\mu}V_{8}^{\nu} - \partial^{\nu}V_{8}^{\mu}, B\} \rangle \right) + \langle \bar{B}\gamma_{\mu}B \rangle \langle V_{0}^{\mu} \rangle + \frac{C_{0}}{4M} \langle \bar{B}\sigma_{\mu\nu}V_{0}^{\mu\nu}B \rangle \right\}$$

$$V_S = C_{ij}^s g^2 \left(\frac{1}{m_v + 2M_B}\right) \vec{\epsilon_2} \cdot \vec{\sigma} \vec{\epsilon_1} \cdot \vec{\sigma}$$
$$V_U = -C_{ij}^u g^2 \left(\frac{1}{m_v - 2M_B}\right) \vec{\epsilon_1} \cdot \vec{\sigma} \vec{\epsilon_2} \cdot \vec{\sigma}$$

Solving Bethe-Salpeter equations in coupled channel formalism:

$$T = V + VGT$$

$$V = V_t + V_{contact} + V_u + V_s$$

$$\begin{aligned} G &= i2M \int \frac{d^4q}{2\pi^4} \frac{1}{(P-q)^2 - M^2 + i\epsilon} \frac{1}{q^2 - m^2 + i\epsilon} \\ &= \frac{2M}{16\pi^2} \Biggl\{ a(\mu) + ln \frac{M^2}{\mu^2} + \frac{m^2 - M^2 + s}{2s} ln \frac{m^2}{M^2} \\ &+ \frac{\bar{q}}{\sqrt{s}} \Biggl[ln \left(s - \left(M^2 - m^2 \right) + 2\bar{q}\sqrt{s} \right) - ln \left(-s + \left(M^2 - m^2 \right) + 2\bar{q}\sqrt{s} \right) \\ &- ln \left(s - \left(M^2 - m^2 \right) + 2\bar{q}\sqrt{s} \right) \Biggr] \Biggr\} \end{aligned}$$

But rho and K* mesons are quite wide!!

$$T = V + VGT$$

$$\tilde{G}(s) = \frac{1}{N} \int_{(m-2\Gamma_i)^2}^{(m+2\Gamma_i)^2} \mathrm{d}\tilde{m}^2 \left(-\frac{1}{\pi}\right)$$
$$\times \operatorname{Im} \frac{1}{\tilde{m}^2 - m^2 + \mathrm{i}m\Gamma(\tilde{m})} G(s, \tilde{m}^2, \tilde{M}_B^2),$$

with

$$N = \int_{(m-2\Gamma_i)^2}^{(m+2\Gamma_i)^2} \mathrm{d}\tilde{m}^2 \left(-\frac{1}{\pi}\right) \operatorname{Im} \frac{1}{\tilde{m}^2 - m^2 + \mathrm{i}m\Gamma(\tilde{m})}$$

where, for example, for rho meson --> 2 pions

$$\Gamma(\tilde{m}) = \Gamma_{\rho} \frac{m_{\rho}^2}{\tilde{m}^2} \left(\frac{\tilde{m}^2 - 4m_{\pi}^2}{m_{\rho}^2 - 4m_{\pi}^2}\right)^{3/2} \theta(\tilde{m} - 2m_{\pi}).$$

Ref: E. Oset and A. Ramos (EPJA 44, 445 (2010))

Strangeness 0, Isospin 1/2

jueves 29 de noviembre de 12

The latest GWU analysis (ARNDT 2006) finds no evidence for this resonance.
Breit-Wigner mass = 1650 to 1750 (≈1700) MeV
Breit-Wigner full width = 50 to 150 (~100) MeV
$P_{\text{beam}} = 1.05 \text{ GeV}/c$
$4\pi\lambda^2 = 14.5 \text{ mb}$
Re(pole position) = 1630 to 1730 (≈1680) MeV
-2Im(pole position) = 50 to 150 (≈100) MeV

N(1700) DECAY MODES The following branching fractions are our estimates, not fits or averages.

Γi	Mode	Fraction (Γ_i / Γ)	р (MeV/ <i>c</i>)
Γ1	Νπ	5–15%	581
Γ ₂	Νη	$(0.0 \pm 1.0) \times 10^{-2}$	402
F ₃	ΛΚ	<3%	255
Γ4	ΣΚ		109
Γ5	Νππ	85–95%	550
Γ6	Δπ		386
Γ7	Δ(1232) π, S-wave		386
F ₈	Δ(1232) π, D-wave		386
Г9	Νρ	<35%	-1
Γ ₁₀	N ρ, S=1/2, D-wave		-1
F ₁₁	N ρ, S=3/2, S-wave		-1
Γ ₁₂	N ρ, S=3/2, D-wave		-1
Γ ₁₃	N ((ππ)) _{S-wave} ^{/=0}		_
Γ ₁₄	ργ	0.01 – 0.05%	591
Γ ₁₅	p γ, helicity=1/2	0.0 - 0.024%	591
Γ ₁₆	p γ, helicity=3/2	0.002 - 0.026%	591
Γ ₁₇	ny	0.01 – 0.13%	590
Γ ₁₈	n γ, helicity=1/2	0.0 - 0.09%	590
Γ ₁₉	n γ, helicity=3/2	0.01 – 0.05%	590

Strangeness 0, Isospin 3/2

t-channel 0.14 K*Z squared amplitude (100 MeV 0.12 S=1/2,3/20.1 t- + u-channel + contact interaction 0.08 spin=1/2 0.06 4 0.04 0.02 S = 1/23 1600 1700 1900 2000 2100 2200 1800 2 Total energy (MeV) 1 1600 1700 2000 2100 2200 1800 1900 Pole (s=1/2): 2006 - i112 MeV Total energy (MeV) $1/2^{-}\Delta(1900)$

jueves 29 de noviembre de 12

(K. P. Khemchandani, A. M. Torres, H. Kaneko, H. Nagahiro, A. Hosaka, PHYSICAL REVIEW D 84, 094018 (2011); [arXiv:1107.0574 [nucl-th]].)

S=-1, Isospin 0

jueves 29 de noviembre de 12

(K. P. Khemchandani, A. M. Torres, H. Kaneko, H. Nagahiro, A. Hosaka, PHYSICAL REVIEW D85 (2012) 114020; arXiv:1203.6711.

Isospin 1

Spin	$\longleftarrow s = 1/2 \longrightarrow$		<i>(</i>	$ s = 3/2 \longrightarrow$
	$V = V_t$	$V = V_{t+C.T+s+u}$	$V = V_t$	$V = V_{t+C.T+s+u}$
$M_R - i\Gamma/2~({ m MeV}) \longrightarrow$		1822-i15	_	1947 - i17
Channels \downarrow	(Couplings (g^i) of the pole	s to the dif	ferent channels
\bar{K}^*N (1831)	-	2.3-i0.0		-0.3 + i0.2
$ ho\Lambda$ (1886)	-	-0.6 + i0.0	_	-0.5 + i0.2
$\rho\Sigma$ (1963)	-	-1.9 + i0.0	_	2.7 + i0.2
$\omega\Sigma$ (1975)	-	-1.0 + i0.0	_	0.3 + i0.1
$K^* \Xi$ (2210)		0.1-i0.0	-	1.9 + i0.2
$\phi\Sigma$ (2213)	_	1.6 - i0.0	_	0.2 - i0.0

		Isospin 1		Σ (1940) D_{13}
Spin	<	s = 1/2	<	$s = 3/2 \longrightarrow$
	$V = V_t$	$V = V_{t+C.T+s+u}$	$V = V_t$	$V = V_{t+C.T+s+u}$
$M_R - i\Gamma/2~({ m MeV}) \longrightarrow$		1822-i15	_	1947 - i17
Channels \downarrow	Couplings (g^i) of the poles to the different channels			
\bar{K}^*N (1831)	, <u> </u>	2.3-i0.0	_	-0.3 + i0.2
$ ho\Lambda$ (1886)	_	-0.6 + i0.0	_	-0.5 + i0.2
$\rho\Sigma$ (1963)	-	-1.9 + i0.0	-	2.7 + i0.2
$\omega\Sigma$ (1975)	·	-1.0 + i0.0	_	0.3 + i0.1
$K^*\Xi$ (2210)	_	0.1-i0.0	-	1.9 + i0.2
$\phi\Sigma$ (2213)	_	1.6 - i0.0	-	0.2 - i0.0

(K. P. Khemchandani, A. M. Torres, H. Kaneko, H. Nagahiro, A. Hosaka, PHYSICAL REVIEW D 84, 094018 (2011); [arXiv:1107.0574 [nucl-th]].)

Some resonances are well known as dynamically generated ones in PB systems: eg., $\Lambda(1405)$, $\Lambda(1670)$.

Refs: (i) R. H. Dalitz and S. F. Tuan, Phys. Rev. Lett. 2, 425 (1959).

(ii) E. Oset and A. Ramos, Nucl. Phys. A635, 99–120 (1998).

(iii) D. Jido, T. Sekihara, Y. Ikeda, T. Hyodo, Y. Kanada-En'yo, E. Oset, Nucl. Phys. A835, 59-66 (2010).

(iv) D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meissner, Nucl. Phys. A 725, 181 (2003) [nucl-th/0303062]

(v) Y. Ikeda, T. Hyodo and W. Weise, Phys. Lett. B 706, 63 (2011) [arXiv:1109.3005 [nucl-th]].

(vi) T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012) [arXiv:1104.4474 [nucl-th]].

(K. P. Khemchandani, A. M. Torres, H. Kaneko, H. Nagahiro, A. Hosaka, PHYSICAL REVIEW D 84, 094018 (2011); [arXiv:1107.0574 [nucl-th]].)

What is known about $\Lambda(1405)$, $\Lambda(1670)$?

Ref: Jido, Oller, Oset, Ramos, Meissner, NPA 725 (203) 181.

	PB channels	Mass (MeV)	VB channels	Mass (MeV)
	KN	1435	K [*] N	1831
	$\pi\Sigma$	1330	ρΣ	1963
	ηΛ	1663	ωΛ	1898
100000	KΞ	1814	$\Phi\Lambda$	2136
			K*Ξ	2210

• Can these VB channel bring any new information regarding the properties of the $\Lambda(1405)$, $\Lambda(1670)$?

From basics: QM two level problem

Energy

And the higher energy level could get wider.

jueves 29 de noviembre de 12

From basics: QM two level problem

Energy

And the higher energy level could get wider.

jueves 29 de noviembre de 12

PB-VB coupled systems: Results on low-lying resonances

	$\Lambda(1405)$				$\Lambda(10$	670)
	Pole1		Pole2			
PB-VB	0	6	0	6	0	6
coupling						
$M_R - i\Gamma/2 \rightarrow$	1377 - i63	1357 - i53	1430 - i15	1412 - i11	1767 - i25	1744 - i28
(MeV)						
Channels \downarrow		Couplings (g^i) of the pole	es to the differe	nt channels	
$\bar{K}N$	1.4 - i1.6	1.1 - i1.4	2.4 + i1.1	2.8 + i0.5	0.2 - i0.5	0.3 - i0.6
$\pi\Sigma$	-2.3 + i1.4	-2.2 + i1.4	-0.2 - i1.4	-0.2 - i1.1	0.1 + i0.2	0.1 + i0.3
$\eta\Lambda$	0.2 - i0.7	0.1 - i0.6	1.3 + i0.3	1.5 + i0.1	-1.0 + i0.3	-1.0 + i0.3
KΞ	-0.4 + i0.4	-0.6 + i0.4	0.0 - i0.3	0.0 - i0.3	3.2 + i0.3	3.4 + i0.2
$\bar{K^*N}$	0.0 + i0.0	-1.7 + i0.7	0.0 + i0.0	-0.1 - i5.3	0.0 + i0.0	-0.3 + i1.1
$\omega\Lambda$	0.0 + i0.0	-0.7 - i0.3	0.0 + i0.0	0.2 - i1.8	0.0 + i0.0	0.1 - i0.1
$ ho\Sigma$	0.0 + i0.0	1.3 + i6.8	0.0 + i0.0	-2.4 - i1.6	0.0 + i0.0	$0.3 - \mathrm{i}3.5$
$\phi\Lambda$	0.0 + i0.0	1.0 + i0.5	0.0 + i0.0	-0.3 + i2.6	0.0 + i0.0	-0.2 + i0.1
$K^* \Xi$	0.0 + i0.0	1.3 + i5.7	0.0 + i0.0	-2.0 - i0.5	0.0 + i0.0	0.5 - i1.2

Isospin 0

jueves 29 de noviembre de 12

 $ho\Sigma$ squared amplitude (10⁻²MeV ⁻²

Isospin 0

jueves 29 de noviembre de 12

 $ho\Sigma$ squared amplitude (10⁻²MeV ⁻²

Isospin 0

jueves 29 de noviembre de 12

amplitude (10^{-2} MeV $^{-2}$

 $\rho\Sigma$ squared

Isospin 0

jueves 29 de noviembre de 12

amplitude $(10^{-2} MeV)$

 $\rho\Sigma$ squared

Isospin 0

jueves 29 de noviembre de 12

amplitude (10⁻²MeV

 $\rho\Sigma$ squared

Isospin 0

Isospin 0

jueves 29 de noviembre de 12

amplitude (10⁻²MeV

ρΣ squared

Isospin 0

jueves 29 de noviembre de 12

amplitude (10⁻²MeV

ρΣ squared

Isospin 1

Spin	<i>(</i>	$s = 1/2 \longrightarrow$	<	s = 3/2
	$V = V_t$	$V = V_{t+C.T+s+u}$	$V = V_t$	$V = V_{t+C.T+s+u}$
$M_R - i\Gamma/2~({ m MeV}) \longrightarrow$	_	1822 - i15	_	1947 - i17
Channels \downarrow	(Couplings (g^i) of the pole	es to the dif	ferent channels
\bar{K}^*N (1831)		2.3-i0.0		-0.3 + i0.2
$ ho\Lambda$ (1886)	-	-0.6 + i0.0	-	-0.5 + i0.2
$ ho\Sigma$ (1963)	-	-1.9 + i0.0	-	2.7 + i0.2
$\omega\Sigma$ (1975)	·	-1.0 + i0.0	_	0.3 + i0.1
$K^* \Xi$ (2210)	-	0.1-i0.0		1.9 + i0.2
$\phi\Sigma$ (2213)	_	1.6-i0.0	-	0.2-i0.0

Isospin 1

Spin	$\longleftarrow s = 1/2 \longrightarrow$		
	$V = V_t$	$V = V_{t+C.T+s+u}$	
$M_R - i\Gamma/2 ~({ m MeV}) \longrightarrow$	-	1822 - i15	
Channels \downarrow		Couplings (g^i) of the poles	
\bar{K}^*N (1831)	-	2.3 - i0.0	
$ ho\Lambda$ (1886)	-	-0.6 + i0.0	
$ ho\Sigma$ (1963)	-	-1.9 + i0.0	
$\omega\Sigma$ (1975)	-	-1.0 + i0.0	
$K^* \Xi$ (2210)	-	0.1 - i0.0	
$\phi\Sigma$ (2213)	_	1.6 - i0.0	

(K. P. Khemchandani, A. M. Torres, H. Kaneko, H. Nagahiro, A. Hosaka, PHYSICAL REVIEW D85 (2012) 114020; arXiv:1203.6711.

jueves 29 de noviembre de 12

Isospin 1

Spin $\longleftarrow s = 1/2 \longrightarrow$		(\mathbf{i})	1899 ;16	
	$V = V_t$	$V = V_{t+C.T+s+u}$		1022 - 110
$M_R - i\Gamma/2~({ m MeV}) \longrightarrow$		1822-i15		
Channels \downarrow		Couplings (g^i) of the poles	(ii)	1873 - i88
\bar{K}^*N (1831)		2.3 - i0.0	(/	
$ ho\Lambda$ (1886)	-	-0.6 + i0.0		
$\rho\Sigma$ (1963)	-	-1.9 + i0.0	(iii)	1936 - i132
$\omega\Sigma$ (1975)	-	-1.0 + i0.0		
$K^* \Xi$ (2210)	_	0.1 - i0.0		
$\phi\Sigma$ (2213)	_	1.6-i0.0		

Isospin 1

Spin	$\longleftarrow s = 1/2 \longrightarrow$		(i) 1899 ; 16
	$V = V_t$	$V = V_{t+C.T+s+u}$	Real axis: 1800, $\Gamma = 32$
$M_R - i\Gamma/2~({ m MeV}) \longrightarrow$		1822-i15	Strongly coupled to: $\eta\Sigma$
Channels \downarrow		Couplings (g^i) of the poles	(ii) 1873 - i88
\bar{K}^*N (1831)	-	2.3-i0.0	
$ ho\Lambda$ (1886)	-	-0.6 + i0.0	
$\rho\Sigma$ (1963)	-	-1.9 + i0.0	(iii) 1936 - i132
$\omega\Sigma$ (1975)	-	-1.0 + i0.0	
$K^* \Xi$ (2210)	-	0.1 - i0.0	
$\phi\Sigma$ (2213)		1.6 - i0.0	

Isospin 1

Spin	$\longleftarrow s = 1/2 \longrightarrow$		(i) 1822 i16 Σ (1750) 1/2
	$V = V_t$	$V = V_{t+C.T+s+u}$	(1) $1022 - 110$ Real axis: 1800, $\Gamma = 32$
$M_R - i\Gamma/2~({ m MeV}) \longrightarrow$		1822-i15	Strongly coupled to: $\eta\Sigma$
Channels \downarrow		Couplings (g^i) of the poles	(ii) 1873 - i88
\bar{K}^*N (1831)		2.3-i0.0	
$ ho\Lambda$ (1886)	-	-0.6 + i0.0	
$\rho\Sigma$ (1963)	-	-1.9 + i0.0	(iii) 1936 - i132
$\omega\Sigma$ (1975)	<u> </u>	-1.0 + i0.0	
$K^* \Xi$ (2210)	-	0.1-i0.0	
$\phi\Sigma$ (2213)		1.6-i0.0	
Vector Meson-Baryon interactions: Results

Isospin 1

Spin	{	s = 1/2	(j) 1822 - j16	Σ (1750) 1/2 ⁻
	$V = V_t$	$V = V_{t+C.T+s+u}$	Real axis: 1800, Γ	· =32
$M_R - i\Gamma/2~({ m MeV}) \longrightarrow$		1822-i15	Strongly coupled to	»: ηΣ
Channels \downarrow		Couplings (g^i) of the poles	(ii) 1873 - i88	
\bar{K}^*N (1831)	-	2.3-i0.0		Σ (2000) 1/2 ⁻
$ ho\Lambda$ (1886)	-	-0.6 + i0.0		
$\rho\Sigma$ (1963)	-	-1.9 + i0.0	(iii) 1936 - i132	
$\omega\Sigma$ (1975)	-	-1.0 + i0.0		
$K^* \Xi$ (2210)	_	0.1 - i0.0		
$\phi\Sigma$ (2213)	_	1.6-i0.0		

(K. P. Khemchandani, A. M. Torres, H. Kaneko, H. Nagahiro, A. Hosaka, PHYSICAL REVIEW D85 (2012) 114020; arXiv:1203.6711.

Vector Meson-Baryon interactions: Results

Isospin 1

Spin	<i>\</i>	s = 1/2	(i) $1822 - i16 \sum (1750) \frac{1}{2}$
	$V = V_t$	$V = V_{t+C.T+s+u}$	Real axis: 1800, $\Gamma = 32$
$M_R - i\Gamma/2~({ m MeV}) \longrightarrow$		1822-i15	Strongly coupled to: $\eta\Sigma$
Channels \downarrow		Couplings (g^i) of the poles	(ii) 1873 - i88
\bar{K}^*N (1831)	-	2.3-i0.0	\sum (2000) 1/2 ⁻
$ ho\Lambda$ (1886)	-	-0.6 + i0.0	Real axis: 1 peak
$ ho\Sigma$ (1963)	-	-1.9 + i0.0	(iii) 1936 - i132
$\omega\Sigma$ (1975)	-	-1.0 + i0.0	
$K^* \Xi$ (2210)	-	0.1 - i0.0	
$\phi\Sigma$ (2213)		1.6-i0.0	

(K. P. Khemchandani, A. M. Torres, H. Kaneko, H. Nagahiro, A. Hosaka, PHYSICAL REVIEW D85 (2012) 114020; arXiv:1203.6711.

Summary:

- The tree-level contributions from the contact term obtained from hidden gauge Lagrangian and from the s- and u- channel exchange diagrams are not negligible.
- The resulting vector meson-baryon interaction is very spin-isospin dependent. This is something which should be expected when two particles with spin interact.
- Many low-lying resonances like Λ(1405) couple strongly to VB ⇒ very useful information, for instance, to study photoproduction of Λ(1405)[†].

jueves 29 de noviembre de 12

Summary:

- Some resonance poles disappear (become unphysical).
- Also new poles can appear.
- It is important to use these amplitudes to study relevant reactions (which have been studied experimentally.