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Proton structure @

Proton structure corrections in hydrogen atom
Proton radius: calculations

N. G. Kelkar, F. Garcia Daza, M. Nowakowski, Nucl. Phys B 864, 382 (2012)



. SCIENTIFIC The proton shrinks in size
I I a r‘ AMERICAN" Tiny change in radius has huge implications.
" physorg.com Particle physics: 'Honey, | shrunk the proton'
Che Neww Nork Times Fora Proton, a Little Off the Top
RINKING (or Side) Could Be Big Trouble

NewScientist Incredible shrinking proton raises
eyebrows

* The Incredible Shrinking Proton That Could
P!SGQQV' NRE Rattle the Physics World

Is the new radius redefining physical constants
or
Was it much ado about nothing? Let us find out .....


http://blogs.discovermagazine.com/80beats/2010/07/08/the-incredible-shrinking-proton-that-could-rattle-the-physics-world/
http://blogs.discovermagazine.com/80beats/2010/07/08/the-incredible-shrinking-proton-that-could-rattle-the-physics-world/
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R. Pohl et al, The size of the proton, Nature 466, 213 (2010)

On the basis of a very accurate measurement of the 25-2P Lamb shift in muonic
hydrogen atom and theoretical inputs to calculate the finite size effects due to the
proton structure, the charge radius of the proton was deduced to be

0.84184(67) fm.

This is smaller than the CODATA value of 0.8768(69) fm

CODATA- Committee on Data for Science and Technology
P. Mohr et al, Rev. Mod. Phys. 80, 633 (2008).



Structure of the proton and electromagnetic form factors

—

Quarks are charged and hence the charge distribution inside the proton
must reflect in electron-proton scattering just as in electron nucleus scattering

For scattering on a charge distribution:
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Early nucleon structure investigations — Hofstader, Rev. Mod Phys. 28, 214 (1956)
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Density distributions: square, Gaussian and exponential

Square: difraction pattern typical of electron-nucleus scattering
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400 MeV electrons scattered from protons
Scattering from an exponential charge distribution of rms radius 0.8 fm

pplr) = P’DE'-_T'ML (r?) = 4?Tf‘f'4ﬂ('f'}df

which gives a form factor

Fylq) = (1 +q ai/h?)~"



Dirac and Pauli form factors

Charge and magnetization densities
For point like spin % nucleons
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Ernst, Sachs and Wali introduced a set of form factors related to the charge and

current distributions in the nucleon
F. J. Ernst, R. G. Sachs and K. C. Wali, Phys. Rev. 119, 1105 (1960)
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F’f{ggj - gives deviation from point charge Dirac particle (Dirac form factor)

F'gp{rf) - Deviation from a point anomalous magnetic moment (Pauli form factor)

2
Gy(q®) = Fi(¢*) + 4”39{,

G (q?) = F{(¢°) + F2(q°).

Fp( ),

are the so called Sachs form factors, which in the Breit frame are the
Fourier transforms of the charge and magnetization densities
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Proton Radius: How do we measure it?

1. Electron — proton scattering data
Extract form factors — deduce densities
and root mean square radius

2. Hydrogen spectroscopy
shielded Coulomb potential -
shifts in the energy levels due to nuclear structure effects

(181,28 1) = 2 466 061 413 187.074(34) kHz
[1.4 % 1071],

Py =

3. Muonic hydrogen spectra and Lamb shift
exotic atom — muon being heavier —
smaller atom — muon closer to proton

—> finite size effects more prominent .y
I

4 eV
1058 MHz

A comparison between n=2, electronic hydrogen (left) and
muonic hydrogen levels (right) 251/
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Proton radius from e-p scattering experiments

The e-p cross section can be written in terms of the Sachs form factors
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Proton radius from hydrogen spectroscopy

Accurate data on the transition frequencies in electronic hydrogen atom. Taken
together with QED corrections and finite size effects can be used to determine the

radius of the proton.

- CODATA 2006
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H/D spectroscopy + QED Py

(10eV)

1 0.8760(78) fm
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Rydberg constant , Lamb shift and the proton radius

The Rydberg constant is related to other constants by the relation

P LES

R. =
“on

In the simple Bohr theory, the frequency of transition is proportional to the energy
difference between the initial and final states
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The exact solution of the Dirac equation in the external Coulomb field can be

written as follows: E, =m+m[f(nj)—1].
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When one includes the recoil corrections and Lamb shift

mf . N
[ﬂ”d) — ]]_ =+ Lujf = EE‘R + Luﬂ

wi = (m+ M)+ m.[f(nj)— 1] — Som + Mk

Lamb shift is usually defined as any deviation from the prediction of Dirac equation
that arises from radiative, recoil, nuclear structure, relativistic and binding effects but

excludes hyperfine contributions

A simpler definition — deviation from the prediction of the Schroedinger equation



The measurement of the Lamb shift can be disentangled from the Rydberg
constant by using two different intervals of hydrogen structure. For example,

fisas =2466061413187.34(84)kHz, 6 =34x10" '3,
fos, a8, = 170649561581.1(5.9)kHz, 6 =7.7x10""?

EIS—ES - [E?EI}. 151 ] + L?S. T L151_.-3
EES—HD - [EQE 3'51 ] + LHD — Lz&_.-g

The first differences on the right hand side are dependent on the Rydberg constant
which can be eliminated using the two equations. The left hand side is replaced

by accurate measurements and the Lamb shift is determined independent of the
Rydberg constant.

Knowing the accurate value of the Lamb shift, the Rydberg constant can be determined

R, = 10973731.568527(73) m™



Measured energy splitting = R. E(n,j) + E(Lamb shift) ... (1)

E(Lamb shift) = E(QED corrections) + E(proton structure)

In R. Pohl et al, The size of the proton, Nature 466, 213 (2010)
For the case of muonic hydrogen atom

AESS ,p = 206.2949(32) meV
AESY,p = 200.9779 (49) — 5.226272 + 0.03477  meV
A comparison of the theoretical and experimental value resulted in the proton radius

0.84184(67) fm

This value is smaller than the CODATA value which is used in (1) to determine the
accurate value of the Rydberg constant, R,

Plugging the new radius of 0.84184 fm in (1), R~ shifts by -110 kHz



Proton structure and the hydrogen atom

Proton in the hydrogen atom is not point-like

- 1/R Coulomb potential gets modified

Classically, we can replace the proton by a spherical charge distribution and write

1
Vo(R)= - €%4 ,
- ()] mero

\ 2Rc Re) 1 ©

However, a proper calculation has to be quantum mechanical

— the electron wave function is everywhere!




A simple text book calculation
Itzykson and Zuber — Quantum Field theory

The nucleus has a finite size and its charge distribution is not concentrated at a point.
The correction to the energy can be written using the correction to the point Coulomb
potential.

AE = ¢ [de]u(n)p [v(-r) + o }
. 27T

Approximating the wave function by its value at the origin

= e|'@(0)|2/d1‘ [V('f‘) + 4;]

After some manipulations and using the Poisson equation, V*(8V(r)) = —pc(r)



Friar’s formalism
J. L. Friar, Annals of Physics 122, 151 (1979)

The 1/r Coulomb potential is modified to

r—s| r
p(s) - charge density of the nucleus (proton in this case)

Using perturbation theory, the correction to the energy level is

o, Zap
0) ({F“) — T(FE}(E] + .. )

When one considers the wave function at the origin only, one is left with
simple integrals of the type

2w

AE ~ 3 |q{>”

< fr)>= [ d'rp(r) fr)



The second term is the third moment of the convoluted proton
charge density and is defined as:

|r1|"|
(7 )iy /diﬁ,@{ (1)

where the convoluted charge density is given by

£(2) =fﬁf3:pt‘i1(|z_ r|)pt‘h‘(:)'

Inserting the Fourier transform of the electric Sachs form factor



Breit potential method for hydrogen atom
F. Garcia Daza, N. G. Kelkar and M. Nowakowski, J. Phys. G39, 035103 (2012)
ibid, AIP Conf. Proc. 1388, 461 (2011)
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Standard amplitude for point like protons and electrons

—f _ 1

My; = e*(uyy"uy) Dy (q) (T )

Taking into account the structure of the protons

a(p") " u(p) — a(p’) TH(p'. p) ulp),
i
2m,,

a(p") TH(p', p) ulp) = a(p’) (':r-“ Fi(q) + Fz(qz)cf“”qp) u(p).
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A Fourier transform of this potential can be used to calculate corrections to energies

Similar method has been applied earlier to calculate the finite size corrections
in exotic atoms and nuclei — N. G. Kelkar and M. Nowakowski, PLB 651, 363 (2007),
M. Nowakowski, N. G. Kelkar and T. Mart, Phys. Rev. C74, 024323 (2006)



Potentials in r- space

In order to perform analytic calculations, we use the dipole form factors:
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Darwin term without form factors

e m2
'Lrnﬂ-Fl 2':@' :l l 5 1 X
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Darwin term without form factors at g2 =0
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Hyperfine structure:

, oL .
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Calculation of corrections to the energies

The energies are evaluated using first order time independent perturbation theory

In general, for any operator A

A) = [12dr 8 do Ty, (.6, )AL i (1,6, 6),

nlmy
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For example
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In order to get a better insight into the expressions for energies, we replace the
hypergeometric functions by the series expansion and truncate the series at large

orders of the fine structure constant a

ab - ala+ 1)b(b+ ljz:3
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Proton radius: calculations

Radius calculation of Pohl et al.
R. Pohl et al, The size of the proton, Nature 466, 213 (2010)

Calculation based on a precise measurement of the Lamb shift in muonic hydrogen

F=2

apr. .
2Psjs T 174 MHe

=1
Fe1 9875 MHz

S 1 1
=21/2 i i
558 MHa
1T MHz Fe1
=0 ap. .
= "—Cwﬁ MHz
244 nm

=0

2456 THe

Muonic hydrogen atom energy levels

244 nm

Muon is 200 times heavier than electron

D e S — 200 times smaller Bohr radius
_L% MH: — proton structure effects enhanced

=0



Experiment was performed at the Paul Scherrer Institute (PSI) Switzerland

They built a new beam line for low energy (~ 5 keV)
negative muons

— order of magnitude more muons than

in conventional muon beams

¢ ‘ 1. Muons are stopped in H, gas and highly
excited p-p atoms are formed

m mTmm
[ |
[ QY

2. 99% de-excites quickly to 1S ground state

2 kel X-ray
(Koo K K

3. A short laser pulse induces the 25> 2P
immediately followed by the 2P - 1S
de-excitation by emission of 1.9 keV X-rays

15— 50 THz
6 um

4. A resonance curve is obtained by
measuring at different laser wavelengths
the number of 1.9 keV X-rays that occur in
time coincidence with the laser pulse

Finite size
effect:
2 ke X-ray 3.7 meV

(K,

23 meV

F=0

15—



!I " Our value

I

H,O calibration |t

Delayed / prompt events (104

[ | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1
0 49.75 49.8 49.85 49.9 49.95

Laser frequency (THz)

The centroid position of the 2S),'—2P{ % transition is
49,881.88(76) GHz, where the uncertainfy is the Iquac'lratiﬂ sum of
the statistical (0.70 GHz) and the systematic (0.30 GHz) uncertainties.
This frequency corresponds to an energy of AE = 206.2949(32) meV.



E, pr=2 = E, 51 = 206.2949(32) meV

3/2

which has been measured accurately is now compared with the calculated value
incorporating the proton structure effects via the proton radius.

— / K 2 3 3
E2 p;i:; - E2 S{Fgl = 209.9779 (49) — 5.2262 I’P + 0.0347 s mevV,
EQ.szl = ilEﬁ?q &EFS = 8352082 I]_"IE'VFJ
1/2 / s
_ A 2Ps; 3\ 2Py
Eyp= = ABLs + AEps” + SAE, ", AEZ2 = 3.392588 meV,

AEps = Ep,,, — Eas, .

AE%.. = 22.8148 (78) meV. obtained in A. P. Martynenko, Phys. Rev. A 71, 022506 (2005)
—> Finite size effects included using a Zemach radius 1.022 fm

AE; s = 206.0573(45) — 5.2262 rl’-’f; +0.0347 rf'; meV,

Evaluated using Friar’s formalism for finite size effects



Radius calculation using Breit potential for finite size effects

Comparing an expansion of the Sach’s dipole form factor

G%(¢*) = 1— 2¢% /m* + ...

with the standard expansion of this form factor

GLl@®)= 1— <72 > ¢/6+ ... wecanwrite <72 >=12/m?

Replacing for the dipole parameter m by the proton radius as above

251;’2

- AEc,} = - ( 4.30248r2 —0.020585r )

Compare with the terms in Pohl et al., -5.2262 7} + 0.0347 7 meV



Different finite size corrections to the 2S energy level

. 2aZ [aZm, \" - a/Zm
A EBerie — ; ( : ) [(,rﬁ)——2 "(r-"*)m+...]

E. Borie, Phys. Rev. A 71, 032508 (2005)

Breit potential method gives

3/ mAa
281, M - A>
AE. T = é (A1 — Ay + A3)r, + v (—2A|+2?—3A3)r;

12/12
QUm0 A N
4 T2 43

Ay =14k, /(1 — k5?1, Ay =k, /IK2(1 — k)], Ay = 1+ [k, /(1 — k)]



Correction to the Darwin term due to form factors

Once a relativistic calculation using the Dirac equation is performed, one does not
need to include the Darwin term ... finite size corrections to the Darwin
term should however be included!

1 1

. i0p.(a X p,) iox.(qxpy)
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p

1202 42 1112, 122
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Correction to the Darwin energy terms due to form factors

EF2@D _ 14418512 : 2613r2 — 6.6 x 107%2 1
D = 14.418512 = 0.0793r, 4+ 0.0002613r, — 6.6 x 10""r, +--- meV

EE@* =0 _ 14 4185121 meV,

2 )

B2 — 13 768501 meV

AEp =0.64992 — 0.0793r, +0.0002613r% — 6.6 x 107773 meV,

Darwin — P



# | Contribution Our selection
Ref. WValue
1 | NR One loop electron VP L2
2 | Relativistic correction (corrected ) 1-3,5
3 | Relativistic one loop VP 3 2050282
4 | NR two-loop electron VP % 14 1.5081
5 | Polarization insertion in two Coulomb lines %3 0.1509
6 | NR three-loop electron VP 1 0.00529
7 | Polarisation insertion in two 11,12 0.00223
and three Coulomb lines (corrected)
8 | Three-loop VP (total, uncorrected )
9 | Wichmann-Kroll 51516 —0.00103
10 | Light by light electron loop contribution 0.00135
(Virtual Delbriick scattering)
11 | Radiative photon and electron polarization 12 —0.00500
in the Coulomb line a*(Za)*
12 | Electron loop in the radiative photon 17-17 —0.00150
of order a’(Za)*
13 | Mixed electron and muon loops 20 0.00007
14 | Hadronic polarization a(Za)*m, 21-13 0.01077
15 | Hadronic polarization a(Za)fm, 2,3 0.000047
16 | Hadronic polarization in the radiative 22,13 —0.000015
photon o (Za)m,
17 | Recoil contribution 24 0.057 50
18 | Recoil finite size 3 0.01300
19 | Recoil correction to VP 5 —0.00410
20 | Radiative corrections of order o®(Za)m, &7 —0.66770
21 | Muon Lamb shift 4th order 5 —0.00169
22 | Recoil corrections of order a(Za)® i, 2,57 —0.04497
23 | Recoil of order a® 2 0.00030
24 | Radiative recoil corrections of L7 —0.00960
order a(Za ) grm,
25 | Nuclear structure correction of order (Za)® 232525 0.015
(Proton polarizability contribution)
26 | Polarization operator induced correction 22 0.00019
to nuclear polarizability a(Za) m,
27 | Radiative photon induced correction 23 —0.00001

to nuclear polarizability a(Za) m,

Sum

N
( 206.0573)
S~

Lamb shift
Radius independent contributions
206.0573 meV

To this are added the finite size
corrections depending on the
proton radius

2l {aZm, alm,

Borie __ 2\
AE = . (;) —5

AEps = 206.0573(45) —5.2262 12 +0.0347 1> meV

is obtained in Pohl et al.

)y +-



Starting with 206.0573 meV, we also add the finite size corrections to the
energy levels in

AELs = Esp,,, — Eas

[ 1,-".'2

AELs =205.40738 + 0.0793r, — 4.30274r2 +0.020585r) meV

AEP§™ =206.0573(45) — 5.2262r, + 0.0347r, meV

The difference in the first two terms is due to the finite size corrections to the
Darwin terms which have not been included in the Nature paper.



Coefficients of the f - andf ) terms

The finite size correction to the Coulomb energy of the present work is evaluated
using a potential which is a Fourier transform of

|
{Gmﬂqy_4we.FlF”( )
q-

If we decide to club one of the Darwin terms with the above potential,

newdef , 2 X P ? l p l \
Ucou (@) =4me |:FI Fi ( . )+F| F (m)]

GL(q)
= —4H{3[Lﬁl]
q-

A Fourier transform of this potential with a dipole form factor gives the potential

in r-space as
lﬁmmf=—g[l—{ﬂm(l+ﬂi)]
' r 2



The energy correction for the 2S state using this new definition is

.3 \ 2
ewdet I\ « may \~ _ _
AE™ xr=( ) [( r ) (143F(=2,2;3;2/(1 +ma,)))

o
2a, ] m- | + ma,

: 3
4 (ﬁ) (1 +3F(—2,3; 3. 2/(1 —{—m.f'.rf-)))i|.
| +ma, /] ° ‘ '

This after truncating the series expansion of the hypergeometric function
leads to

4. .3 S v ‘
&Enﬂfde;f . o, f‘j . Samy r-l + ...
Coul  — "2 p /12 F '

The first term gives exactly the coefficient found in Pohl et al., namely,



Taking into account other small corrections

AEpg"” = 834678 — 4.26 x 107572 4 1.36 x 10777 meV,
AE;,"* =33912— 1787 x 10772 +5.45 % 107%7) meV.

(1/4)AEjz =5.708 — 0.0347r, +0.0001r; — 3.27 x 10~ "r; meV

= Efp. — Ef ) =209.16073 +0.11388r, — 4.3029r% + 0.020585r meV

LPHZ QSUQ

rp =0.83112 fm

ANamre _ 209 9779(49) — 5.2262@ + 0.0347{; meV

r, = 0.84184(67) fm




SUMMARY

1. There exist different approaches to evaluate the proton structure effects in the
hydrogen atom which lead to different results for the extracted proton radius
- uncertainty due to approach used
- in addition to the uncertainty in the determination of proton form factors

2. The Rydberg constant is usually determined from hydrogen spectroscopy. These
measurements of transition frequencies are less accurate as compared to the
muonic Lamb shift discussed here, but they seem to be highly consistent with each
other and with theory.

3. The small radius determined here would shift the Rydberg constant by -110 kHz
It is related to the electron mass

o 2R~ h
Me = -
. . . c A.a’M,
and also to a new definition of the kilogram  Nay x h = 2 B

The uncertainty in the experimental determinationof N, sng &

is three orders of magnitude larger than the shift in the Rydberg constant



4. There is an ongoing experiment to measure the 1S-2S transition frequency in He*

There is also a plan to measure several transition frequencies between 2S and 2P
levels in muonic helium ions by means of laser spectroscopy

A nuclear radius can be extracted from these measurements.

It is expected that a comparison with other data such as e-He+ and pHe?
scattering would reveal if the discrepancies arise from some missing QED
terms and/or bound state QED.



