

Nuclear Structure in the fpg Shell

N.H. Medina

Instituto de Física, Universidade de São Paulo, São Paulo, Brazil.

Andean School on "Nuclear Physics in the 21st Century"

November 26 th 2012, Bogotá, Colombia

OUTLINE

In-beam γ -ray spectroscopy High spin states pf shell nuclei ^{46,48}V, ⁴⁸Cr fpg shell nuclei 64,66,68,70Ga

Conclusion

In-beam γ -ray spectroscopy

Excited state properties E*,I^π, Q, μ, τ

 γ -ray transition properties E γ , I γ , multipolarity, mixing ratios (δ)

Construction of level schemes

Electromagnetic properties of the excited states

http://nucalf.physics.fsu.edu/~riley/gamma/

Groundstate

lstituto Nazionale di Fisica Nucleare

Gasp y-ray spectrometer

Laboratori Nazionali di Legnaro, Legnaro, Italy

Illustrative representation of a $\gamma - \gamma$ matrix

 $\gamma - \gamma$ coincidence relations

Symmetric $\gamma - \gamma$ matrices or cubes allow level scheme construction

Excited State Angular Momentum

Assigned from γ -ray multipolarities

R_{ADO} : *γ* ray Angular Distribution from Oriented States

Excited states \rightarrow oriented in accordance with the beam direction

Transition between 2 levels

↓Quadrupole \rightarrow L=2

↓Dipole \rightarrow L=1

4Mixed multipolarities: δ values.

 R_{ADO} (angular distribution ratios), used to extract information about the γ transition multipolarities.

$$R_{ADO} = \frac{I_{\gamma}(34^{\circ}) \times I_{\gamma}(146^{\circ})}{2.I_{\gamma}(90^{\circ})}$$

Three asymmetric matrices having on the first axis the detectors in 34°, 90° and 146° and the second axis all the other detectors.

Doppler Shift Attenuation Method

Lifetimes extracted from the lineshape fit of the gamma-rays emitted by nuclei stopping in a backing material (Au or Pb)

$E\gamma \approx E_{\circ} (1 + (v/c) \cos\theta)$

This method uses Monte Carlo Simulation of the trajectories of the recoiling nuclei in a target using Northcliffe & Schilling stopping power parameterization

L.C. Northcliffe & R.F. Schilling, Nucl. Data Tables A 7, 233 (1970) .

• Velocity components in the direction of the γ -ray detectors

• Free parameters: τ and sidefeeding time

J.C. Wells & N.R. Johnson, Rep. ORNL 6689, 44 (1991)

F. Brandolini and R.V. Ribas, Nucl. Inst. Meth. A 417, 150 (1998)

Energy (keV)

Examples of γ -ray lineshape observed at 90 degrees, forward and backward angles.

Current and charge distribution are sensitive to the nuclear state wave funcition.

11

$$T_{fi}(\lambda L) = \frac{8\pi (L+1)}{\hbar L((2L+1)!!)^2} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2L+1} B(\lambda L: I_i \to I_f)$$

$$B(E2) = \frac{815.6}{E_{\gamma}^5 \tau (1+\alpha)} B e^2 fm^4 ; \quad B(M1) = \frac{0.05697}{E_{\gamma}^3 \tau (1+\alpha)} B \mu_N^2$$

$$B(E2) = \frac{5}{16\pi} Q_0^2 \langle I_i K 20 | I_f K \rangle^2$$

$$g = g_R + (g_K - g_R) \frac{K^2}{I(I+1)}$$

High spin states

Shape Coexistence

S.G Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure Cambridge University Press 1995

Single-particle level energies calculated for an axially symmetric harmonic oscillator

Second minima $\beta_2 \sim 0.75$

V.M. Strutinski, Nucl. Phys. A 95, 420 (1967)

Observed in the ¹⁵²Dy nucleus

P.J. Twin et al., Phys. Rev. Lett. 57, 811 (1986)

Third minima $\beta_2 \sim 0.9$

Predicted but not observed

Superdeformation

Balraj Singh et al., Nucl. Data Sheets 97, 241 (2002)

pf shell nuclei (A=50)

Nuclei with valence nucleons occupying the fp orbitals

The odd-odd ⁴⁸V nucleus

K is the angular momentum projection in the symmetry axis

Level scheme of the ⁴⁸V nucleus.

Experimental Details

Fusion-evaporation reactions:

²⁴Mg (²⁸Si, n3p) ⁴⁸V

Thin target experiment

Level scheme investigation. self-supporting target.

XTU Tandem accelerator Legnaro National Laboratories, Italy (LNL)

GASP γ-ray spectrometer

²⁸Si (²⁴Mg, n3p) ⁴⁸V Thick target experiment

Lifetime measurements. backed targets

γ-ray spectrum

Gamma-ray spectrum from the ²⁴Mg on ²⁸Si fusion reaction (E = 100 MeV) gated on some low-lying transition of the ⁴⁸V gs band, and on 3 protons detected by the ISIS array

Nilsson diagram for protons and neutrons, Z or N \leq 50

Natural parity states (positive)

Non-natural parity states (negative)

Odd-odd ⁴⁸V nucleus

K is the angular momentum projection in the symmetry axis

Level scheme of the ⁴⁸V nucleus.

Shell Model

$$\hat{H} = -\sum_{i=1}^{A} \frac{\hbar^2}{2m} \nabla^2 + \frac{1}{2} \sum_{i \neq j} V(x_i, x_j) \qquad \Psi = \Psi(x_1, x_2, x_3, \dots, x_A)$$

Independent Particles Approximation (mean field)

$$\Psi(x_1, x_2, \dots, x_A) = \phi_1(x_1)\phi_2(x_2)\dots\phi_A(x_A) \quad \text{(Slater determinant)}$$

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_{eff}(x_a)\right]\phi_a = E_a\phi_a$$
$$V_{eff} = \frac{1}{2}m\omega^2 r^2 + Dl^2 - C\mathbf{l.s}$$

Large Scale Shell Model

CASTEN, R. F. Nuclear Structure from a Simple Perspective. 2° ed. New York: Oxford University Press, 2005, p.66.

Configuration Mixing

Many valence particles

Most of the excited states are formed by mixing particle-hole configurations

Particle-hole configurations are mixed by the two-body residual interaction:

$$\Psi = c_0 \Psi_{0p0h} + c_1 \Psi_{1p1h} + c_2 \Psi_{2p2h} + \dots$$

$$H = T + V = T + U_{eff} + \underbrace{V - U_{eff}}_{\text{Mean Field}} + \underbrace{V - U_{eff}}_{\text{Netan Field}}$$

Basic idea of the **interacting shell model**: Diagonalize the Hamiltonian H in the base of independent particle configurations.

Residual Interactions

70´s	sd shell ¹⁶ O nucleus	(KB)
80´s	Universal sd (A~30)	(USD)
80's - 2000	A~50 (fp shell)	(KB3, KB3G)
Colle	Iperposition	
of (n	nany) single-particle states.	

2004	Nuclei around ⁵⁶ Ni	(GXPF1)
2009	$f_5 pg_9$ region (1 $p_{3/2}$, 0 $f_{5/2}$, 1 $p_{1/2}$ and 0 $g_{9/2}$).	(JUN45)
2010	fpg region ($Of_{7/2}$, $1p_{3/2}$, $0f_{5/2}$, $1p_{1/2}$ and $0g_{9/2}$).	(fpg)
2010	Inclusion of the 2d _{5/2} orbital	(LNPS)

- **KB** T.T.S. Kuo and G.E. Brown, Nucl. Phys. **A 114**, 241 (1968)
- USD B.H. Wildenthal, Prog. Part. Nucl. **11**, 5 (1984)
- **KB3** A. Poves and A. P. Zuker, Phys. Rep. **71**, 141 (1981)
- **KB3G** A. Poves et al., Nucl. Phys. **A 694**, 157 (2001)
- **GXPF1** M. Honma et al., Phys. Rev. C 69, 034335 (2004)
- JUN45 M. Honma et al., Phys. Rev. C 80 064323 (2009).
- fpg K. Sieja and F. Nowacki, Phys. Rev. C 81 061303 (2010)
- LNPS S.Lenzi, K. Sieja and F. Nowacki, Phys. Rev. C 82 054301 (2010)

Large Scale Shell Model

Large configuration spaces

To have a good description of the nuclear structure with the Shell Model depends on the choice of :

• An adequate configuration space , i.e. defining the inert core and the active orbitals (number of nucleons to be excited).

• An appropriate *residual interaction*. This is the most important ingredient to have a good description of the nuclear structure.

 A code capable to solve the problem . To build and diagonalize the Hamiltonian matrix.

Large Scale Shell Model

Antoine code

m-scheme and Lanczos method

KB3G residual interaction

Configuration space: 10⁷ elements

⁴⁰Ca inert core

full pf shell

E. Caurier, shell model code Antoine, IRES, Strasbourg 1989-2002

E. Caurier and F. Nowacki, Acta Physica Polonica 30, 705 (1999)

DSAM Lifetime measurements

The odd-odd ⁴⁶V nucleus

XTU Tandem accelerator (LNL) GASP spectrometer

²⁴Mg + ²⁸Si E = 100 MeV (lifetime measurements)

²⁸Si + ²⁴Mg E=115 MeV (level scheme)

F. Brandolini et al., Phys. Rev. C 64 (2001) 044307

Natural parity states

Non-natural parity states

Lifetime analysis for ⁴⁶V.

Experimental B(E2) transition rates for positive and negative parity bands in ⁴⁶V. The drop for the negative parity state at $I=10^{-1}$ is correctly predicted. This is explained by the band crossing of the K=0⁻ with the K=7⁻ band.

The even-even ⁴⁸Cr nuclei

XTU Tandem acelerator Laboratori Nacionali di Legnaro (LNL), Italy GASP γ-ray spectrometer

Fusion-evaporation reactions:

 $^{32}S + ^{24}Mg E = 130 MeV$ (level scheme construction)

²⁸Si + ²⁸Si E=115 MeV (lifetime measurements)

Large Scale Shell Model

Experimental levels compared to those calculated using the LSSM

Antoine code full pf shell KB3 residual interaction

Experimental levels compared to those calculated using the LSSM and CHFB

Lineshape examples

⁴⁸Cr nucleus

 β ~ 0.28 near the ground state β ~0.1 at I^{π}=16⁺

Experimental and calculated B(E2) transition rates of the positive and negative parity states.

A Systematic Study of the odd-odd 64,66,68,70Ga nuclei

The goal of this study is to determine the role of the $Og_{9/2}$ orbital in the high spin excited states of the odd-odd ^{64,66,68,70}Ga nuclei.

All these Ga nuclei (Z=31) have valence nucleons in the upper part of the *pf* shell.

40

Experiments performed to study the 64,66,70Ga nuclei

- 8 MV tandem Pelletron accelerator University of São Paulo, Brazil:
 - ⁵⁸Ni(¹¹B,2pn)⁶⁶Ga, E_{beam} = 44 MeV.
 - ⁵¹V(¹⁹F,p3n)⁶⁶Ga, E_{beam}= 54 MeV.
- SACI-PERERE spectrometer:

4 Compton suppressed HPGe detectors.

11 $\Delta E-E$ plastic scintillator detectors.

Experiments performed to study the 64,66,70Ga nuclei

- Super-FN tandem Van de Graaff electrostatic accelerator (9 MV) Florida State University (FSU), USA:
 - ⁵⁸Ni(¹²C,αpn)⁶⁴Ga, E_{beam}= 54 MeV.
 - ⁵⁵Mn(¹⁸O,α3n)⁶⁶Ga, E_{beam}= 67 MeV.
 - ⁵⁵Mn(¹⁸O,2pn)⁷⁰Ga, E_{beam}= 50 MeV.
- FSU Clover Array:

- 7 Compton suppressed HPGe detectors. +
- 3 Compton suppressed Clover detectors (4 detectors each).

<http://www.physics.fsu.edu/nuclear/foxlab/nuclear-foxlab.html>

Odd-odd gallium isotope level schemes

⁶⁸Ga Level Scheme

Large Scale Shell Model

Antoine code.

CAURIER, E and NOWACKI, F. Acta Physica Polonica B 30, (1999).

- two different effective interactions:
 - JUN45 -> Developed specially for the f_5pg_9 region (1p_{3/2}, 0f_{5/2}, 1p_{1/2} and 0g_{9/2}).

HONMA, H. et al., Physical Review C 80, 064323 (2009).

- fpg -> Developed for the fpg region ($Of_{7/2}$, $1p_{3/2}$, $0f_{5/2}$, $1p_{1/2}$ and $0g_{9/2}$).

SIEJA, K. and NOWACKI, F. Physical Review C 81, 061303(R) (2010).

fpg neighbor odd nuclei: Zn (Z=30), Ga (Z=31) and Ge (Z=32)

Antoine code

JUN45 residual interaction

1/2⁻, 3/2⁻, 5/2⁻ and 9/2⁺ excited states

 $9/2^+$ excited states are due to nucleon excitation to the $g_{9/2}$ orbital 46

H. Honma et al. Phys. Rev. C 80 (2009) 064323

P.R.P. Allegro PhD thesis

Antoine Results for 64,66,68,70Ga

 9^+ state: 1 proton and 1 neutron in the $0g_{9/2}$ orbital All negative parity states: one neutron in the $0g_{9/2}$ orbital

Systematic Study of 64,66,68,70Ga nuclei

Systematic Study of 64,66,68,70Ga nuclei

The excited states are described by particle-hole excitations and they are characterized by wave functions with large mixture of configurations.

Test of the calculated wave functions: ⁶⁶Ga 7⁻ Isomeric State E2 transition

$$B_{EXP}(E2) = \frac{\ln(2) \times I\gamma}{1.23 \times 10^9 \times T_{1/2} I_{total} E\gamma^5}$$
$$B(E2, J_i M_i \zeta \rightarrow J_f M_f \xi) = \frac{1}{2J_i + 1} |\langle J_f \xi | | \mathbf{0}_{E2} | | J_i \zeta \rangle$$

Calculated B(E2) for the ${}^{66}\text{Ga}$ 7⁻ \rightarrow 5⁻ Transition

$$B(E2, J_i M_i \zeta \rightarrow J_f M_f \xi) = \frac{1}{2J_i + 1} |\langle J_f \xi | | \mathbf{0}_{E2} | | J_i \zeta \rangle|$$

interaction		Mix(%)	Configuration									Configuration								
	Jπ		protons			neutrons				Jπ	Mix(%)	protons				neutrons				
			$1p_{3/2}$	0f _{5/2}	$1p_{1/2}$	0g _{9/2}	$1p_{3/2}$	0f _{5/2}	$1p_{1/2}$	0g _{9/2}			$1p_{3/2}$	0f _{5/2}	$1p_{1/2}$	0g _{9/2}	1p _{3/2}	$0f_{5/2}$	$1p_{1/2}$	0g _{9/2}
JUN45	7-	10.1	2	1	0	0	4	2	0	1		5.2	2	1	0	0	4	2	0	1
		4.7	2	1	0	0	3	3	0	1		4.0	2	1	0	0	3	3	0	1
		10.3	2	1	0	0	2	4	0	1	5-	7.3	2	1	0	0	2	4	0	1
		4.6	2	1	0	0	2	2	2	1		2.5	2	1	0	0	2	2	2	1
		4.2	1	1	1	0	2	4	0	1		4.9	1	1	1	0	2	4	0	1
FPG	7-	9.5	2	1	0	0	4	2	0	1		3.7	2	1	0	0	4	2	0	1
		7.0	2	1	0	0	3	2	1	1		3.4	2	1	0	0	3	2	1	1
		9.1	2	1	0	0	2	4	0	1		4.6	2	1	0	0	2	4	0	1
		8.3	2	1	0	0	2	2	2	1	5-	2.5	2	1	0	0	2	2	2	1
												6.2	2	0	1	0	4	2	0	1
												5.0	2	0	1	0	3	2	1	1
												5.1	2	0	1	0	2	2	2	1

 $B_{JUN45}(E2) = 301 e^2 fm^4$

 $B_{fpg}(E2) = 259 e^2 fm^4$

Experimental B(E2) for the ⁶⁶Ga $7^- \rightarrow 5^-$ Transition

Two known values for the ⁶⁶Ga 7⁻ isomeric state:

 $T_{1/2} = 57.3 (14) \text{ ns}$ or $T_{1/2} = 39 (2) \text{ ns}$

A. Filevich et al., Nucl. Phys. A, 295, 513, 1978. T. Kouda et al., Ann. Rep. 1996, Radio-isotope Center, Tohoku University, Japan, p. 19, 1997.

SISMEI spectrometer ${}^{58}Ni({}^{11}B,2pn){}^{66}Ga, E_{beam} = 45 \text{ MeV}$ $T_{1/2} = 58.1 (12) \text{ ns}$

$B_{EXP}(E2) = 242 (6) e^{2} fm^{4}$

 $B_{JUN45}(E2) = 301 e^{2} fm^{4}$ $B_{fpg}(E2) = 259 e^{2} fm^{4}$

D.L.Toufen, Master Thesis, Universidade de São Paulo (2008).

Conclusion

In-beam γ -ray spectroscopy

High spin states Nuclear Shapes Shape coexistence Superdeformed shapes

Large Scale Shell Model

fp shell ^{46,48}V and ⁴⁸Cr

fpg shell 64,66,68,70Ga

Collaborators

50

Nb Mo

Sn

50

At the center of the atom is a nucleus formed from nucleons-protons and neutrons. Each nucleon is made from three **quarks** held together by their strong interactions, which are mediated by gluons. In turn, the

nucleus is held together by the strong interactions between the gluon and quark constituents of neighboring nucleons. Nuclear physicists often use the exchange of mesons-particles which consist of a quark and an antiquark, such as the **pion**-to describe interactions among the nucleons.

Ra

126

Po Ar Rn Fr

neutron 10⁻¹⁵ m proton

Nucl

 $(1-10) \times 10^{-15} \,\mathrm{m}$

electromagnetic field

In an atom, electrons range around the nucleus at distances typically up to 10,000 times the nuclear diameter. If the electron cloud were shown to scale, this chart would cover a small town.